六年级上册数学分单元知识点整理期末复习资料
六年级上册数学分单元知识点整理期末复习资料 第一单元位置
1、用数对确定点的位置,如(3,5)表示:(第三列,第五行) 几列几行 ↓↓
竖排叫列横排叫行 (从左往右看)(从前往后看) 2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。 3、图形左、右平移:行不变图形上、下平移:列不变 复习,期末,知识点,资料
第二单元分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 例如:×5表示求5个的和是多少? 2、分数乘分数是求一个数的几分之几是多少。 例如:×表示求的是多少? (二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)、分数混合运算的运算顺序和整数的运算顺序相同。 (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=ac+bc 二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图:
(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。 2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面
3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。 4、写数量关系式技巧: (1)“的”相当于“×”“占”、“是”、“比”相当于“=” (2)分率前是“的”:单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量
---来源网络,仅供分享学习1/8
三、倒数
1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。 (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1;0没有倒数。因为1×1=1;0乘任何数都得0,(分母不能为0) 4、对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;
5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
第三单元分数除法 一、分数除法 1、分数除法的意义: 乘法:因数×因数=积除法:积÷一个因数=另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。 3、规律(分数除法比较大小时): (1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等于0),商大于被除数; (3)、当除数等于1,商等于被除数。 4、“”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。 二、分数除法解决问题 (未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。) 1、数量关系式和分数乘法解决问题中的关系式相同: (1)分率前是“的”:单位“1”的量×分率=分率对应量 (2)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量 2、解法:(建议:最好用方程解答) (1)方程:根据数量关系式设未知量为X,用方程解答。 (2)算术(用除法):分率对应量÷对应分率=单位“1”的量 3、求一个数是另一个数的几分之几:就一个数÷另一个数 4、求一个数比另一个数多(少)几分之几:两个数的相差量÷单位“1”的量或: ①求多几分之几:大数÷小数–1 ②求少几分之几:1-小数÷大数 三、比和比的应用 (一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如15:10=15÷10=(比值通常用分数表示,也可以用小数或整数表示) ∶∶∶∶
---来源网络,仅供分享学习2/8
前项比号后项比值
3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程÷速度=时间。 4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。 比值:相当于商,是一个数,可以是整数,分数,也可以是小数。 5、根据分数与除法的关系,两个数的比也可以写成分数形式。 6、比和除法、分数的联系: 比 前项 比号“:” 后项 比值 除法 被除数 除号“÷” 除数 商
分数 分子
分数线“—” 分母 分数值
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。 8、根据比与除法、分数的关系,可以理解比的后项不能为0。 体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。 (二)、比的基本性质 1、根据比、除法、分数的关系: 商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。 分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。 2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。 3、根据比的基本性质,可以把比化成最简单的整数比。 依据 比的 基本 性质:
4.化简比:
①用比的前项和后项同时除以它们的最大公因数。
(1)②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。 ③两个小数的比:向右移动小数点的位置,先化成整数比再化简。 (2)用求比值的方法。注意:最后结果要写成比的形式。 如:15∶10=15÷10==3∶2
5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。 如:已知两个量之比为,则设这两个量分别为。
---来源网络,仅供分享学习3/8
6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4) 工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)
第四单元圆 一、认识圆
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。 一般用字母O表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。 把圆规两脚分开,两脚之间的距离就是圆的半径。 4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。 直径是一个圆内最长的线段。 5、圆心确定圆的位置,半径确定圆的大小。 6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。 7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。 用字母表示为:d=2r或r= 8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。 折痕所在的这条直线叫做对称轴。 9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。 10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。 只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形 只有4条对称轴的图形是:正方形; 有无数条对称轴的图形是:圆、圆环。 二、圆的周长 1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。 2、圆周率实验: 在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。 发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。 3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。 用字母π(pai)表示。 (1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。 圆周率π是一个无限不循环小数。在计算时,一般取π≈3.14。 (2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。 (3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。 4、圆的周长公式:C=πdd=C÷π 或C=2πrr=C÷2π
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。 在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。 6、区分周长的一半和半圆的周长:
(1)周长的一半:等于圆的周长÷2计算方法:2πr÷2即πr
(2)半圆的周长:等于圆的周长的一半加直径。计算方法:πr+2r即5.14r 三、圆的面积
---来源网络,仅供分享学习4/8
1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。 3、圆面积公式的推导: (1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。 (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。 (3)、拼出的图形与圆的周长和半径的关系。 圆的半径=长方形的宽 圆的周长的一半=长方形的长 因为:长方形面积=长×宽
所以:圆的面积=圆周长的一半×圆的半径 S圆=πr×r 圆的面积公式:S圆=πr2r2=S÷π 4、环形的面积: 一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.) S环=πR2-πr2或 环形的面积公式:S环=π(R2-r2)。 5、扇形的面积计算公式:S扇=πr2×(n表示扇形圆心角的度数) 6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。 而面积扩大或缩小的倍数是这倍数的平方倍。例如: 在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。 7、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。例如: 两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9 8、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π 9、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。 10、确定起跑线: (1)、每条跑道的长度=两个半圆形跑道合成的圆的周长+两个直道的长度。 (2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同) (3)、每相邻两个跑道相隔的距离是:2×π×跑道的宽度 (4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。 11、常用各π值结果: π=3.14 2π=6.28 3π=9.42 5π=15.7 6π=18.84 7π=21.98 9π=28.26 10π=31.4 16π=50.24 36π=113.04 64π=200.96 96π=301.44
---来源网络,仅供分享学习5/8
4π=12.568π=25.1225π=78.5 12、常用平方数结果 =121=144=169=196=225 =256=289=324=361
第五单元百分数
一、百分数的意义和写法
1、百分数的意义:表示一个数是另一个数的百分之几。 百分数是指的两个数的比,因此也叫百分率或百分比。 2、千分数:表示一个数是另一个数的千分之几。 3、百分数和分数的主要联系与区别:
(1)联系:都可以表示两个量的倍比关系。 (2)区别: ①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位; 分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。 ②、百分数的分子可以是整数,也可以是小数; 分数的分子不能是小数,只能是除0以外的自然数。 4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。 二、百分数和分数、小数的互化 (一)百分数与小数的互化: 1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。 2.百分数化成小数:把小数点向左移动两位,同时去掉百分号。 (二)百分数的和分数的互化 1、百分数化成分数: 先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。 2、分数化成百分数: ①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。 ②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 (三)常见的分数与小数、百分数之间的互化 =0.5=50%=0.2=20%=0.625=62.5% =0.25=25%=0.4=40%=0.125=12.5% =0.75=75%=0.6=60%=1.375=37.5% =0.0625=6.25%=0.8=80%=0.875=87.5% =0.04=4﹪=0.08=8﹪=0.12=12﹪=0.16=16﹪ 三、用百分数解决问题 (一)一般应用题 1、常见的百分率的计算方法: ①合格率=②发芽率= ③出勤率=④达标率= ⑤成活率=⑥出粉率= ⑦烘干率=⑧含水率=
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%。) 2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题: 数量关系式和分数乘法解决问题中的关系式相同: (1)分率前是“的”:单位“1”的量×分率=分率对应量
---来源网络,仅供分享学习6/8
(2)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量 3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。 解法:(建议:最好用方程解答)
(1)方程:根据数量关系式设未知量为X,用方程解答。 (2)算术(用除法):分率对应量÷对应分率=单位“1”的量 4、求一个数比另一个数多(少)百分之几的问题: 两个数的相差量÷单位“1”的量×100%或: ①求多百分之几:(大数÷小数–1)×100% ②求少百分之几:(1-小数÷大数)×100% (二)、折扣
1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。
几折就表示十分之几,也就是百分之几十。例如八折==80﹪,六折五=0.65=65﹪ 2、一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35% (三)、纳税 1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。 3、应纳税额:缴纳的税款叫做应纳税额。 4、税率:应纳税额与各种收入的比率叫做税率。 5、应纳税额的计算方法:应纳税额=总收入×税率 (四)利息 1、存款分为活期、整存整取和零存整取等方法。 2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。 3、本金:存入银行的钱叫做本金。 4、利息:取款时银行多支付的钱叫做利息。 5、利率:利息与本金的比值叫做利率。 6、利息的计算公式:利息=本金×利率×时间 7、注意:如要上利息税(国债和教育储藏的利息不纳税),则: 税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)
第六单元统计 一、扇形统计图的意义: 用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。 也就是各部分数量占总数的百分比(因此也叫百分比图)。 二、常用统计图的优点:
1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。 3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。 三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)
第七单元数学广角 一、“鸡兔同笼”问题的特点:
---来源网络,仅供分享学习7/8
题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。 二、“鸡兔同笼”问题的解题方法 1、猜测法 2、假设法
(1)假如都是兔 (2)假如都是鸡 (3)古人“抬脚法”: 解答思路: 假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。关系式: 鸡兔总脚数÷2-鸡兔总数=兔的只数;鸡兔总数-兔的只数=鸡的只数。 3、列方程法
---来源网络,仅供分享学习8/8
因篇幅问题不能全部显示,请点此查看更多更全内容