管理与维护 MANAGEMENT AND MAINTENANCI ̄ 目固口RAILWA日y COM阿PUTER圃APPLICATION V0l 17卷 6期 .17 NO.6 文章编 :1005.8451(2008)06—0026-03 基于神经网络铁路客票制票终端故障诊断系统的设想 邓胜江,姜利,王静,张,研 (中国铁道科学研究院 电子计算技术研究所,北京 100081) 摘 要:在研究神经网络的基础上分析制票机故障诊断的基本原理提出基于神经网络的制票机故障 诊断思想,利用MATLAB神经网络工具箱进行仿真,并对其进行分析。 父键浏:神经网络;诊断;制票机;设想 中图分类弓:TP39 殳I谳杯IJl码:A Research on Fault Diagnosis System for railway ticket printing terminal based on neural network DENG Sheng-jiang,JIANG Li,WANG Jing,ZHANG Yan (InsittuteofComputingTechnologies,ChinaAcademyofRailway Sciences,Beijing 100081,China) Abstract:The fault diagnosis principles of railway ticket printing terminal based on neural network was analyzedthe fault .diagnosis houghtt WaS proposed,it Was emulated by MATLAB neural network tools nd was anaalyzed. Key words:neural network;diagnosis:ticket printer;research 神经网络J}】 J:铁路客 制票终端故障诊断 近年来,随着信息技术高速发展,故障诊断技 1术不断应用在各行各业中,像HP打印机、中国南 方航空等都采用了该项技术。故障诊断(FD)是一 种了解和掌握设备在使用过程中的技术,确定其整 的 奉原 人工神经网络(Artificial Neural Network.简称 体或局部是否正常,早期发现故障及其原因并能预 ANN)正是在人类对其大脑神经网络认识理解的基 础上人工构造的能够实现某种功能的神经网络。它 报故障发展趋势的技术。 在诊断过程中,必须利用被诊断对象表现出来 是理论化的人脑神经网络的数学模型,是基于模仿 的各种有用信息,经过适当地处理和分析,做出正确 大脑神经网络结构和功能而建立的一种信息处理系 的诊断结论。远程故障诊断与维护的实现可以使设 统。它实际上是由大量简单元件相互连接而成的复 备的故障诊断更加灵活方便,也能够实现资源共享。 杂网络,具有高度的非线性,能够进行复杂的逻辑 目前,铁路售票窗口的制票终端都是采用传统 操作和非线性关系实现的系统。典型的神经网络结构如图l。 的服务方式。当设备出现问题时,现场使用人员通 知设备管理部门,设备管理部门进行诊断维修,如 输}}j模式 果设备管理部门不能维修,就报生产厂家售后服务 部门维修。这样不但要花费大量的时间来维护设 备,而且影响用户的工作。而且在诊断维修过程中, 不同的维修人员由于技术水平的差异,维修的效率 还不一样。 隐含层 输出神经元 隐含神经元 如果将故障诊断技术应用到铁路客票制票终端 故障诊断中,则可以提前采集设备状况,提前预告 设备故障发展趋势,提出维护方案,进行维护,从 而不影响用户的日常工作。 输入模式 输入层 输入神经元 收稿日期:2008—12—20 作者简介:邓胜江,研究实习员;姜利,副研究员。 图1 典型神经网络结构 维普资讯 http://www.cqvip.com
I 7往 6驯 艇j 经 络铁路 牟 … 终端敞障i参晰系统的设皂 管理与维护 在众多的人工神经网络模型中,最常用的是BP 是全局误差意义上的梯度下降计算。对各个神经元 (Back Propagation)模型,即利用误差反向传播算 的输出求偏导数,就可以算出误差对所有连接权值 法求解的多层前向神经网络模型。BP网络在故障 的偏导数,从而可以利用梯度下降法来修改各个连 诊断、模式识别、图像识别和管理系统等方面都得 接权值。真正的全局误差意义上的梯度下降算法是 到了广泛的应用。本文讨论利用神经网络中的BP 在全部训练模式都学习完后才校正连接权和阈值。 模型进行制票终端的故障诊断。 首先需要进行知识的获取。由专家提供关于各 种制票终端故障现象(征兆集)及相应的故障原因 (故障集)实例作为学习样本。将数据分为两部分, 一部分用于训练网络,另一部分用于测试。将训练 网络的数据按一定顺序编码,分别赋给网络输入、 输出节点,通过神经网络学习算法对样本进行学 习,经过网络内部自适应算法不断修正权值,直到 达到所要求的学习精度为止。此时在大量神经元之 间联结权值上就分布着专家知识和经验。训练完毕 后,再将测试网络的数据从初始状态出发,向前推 理,将显示出的故障结果与实际的测试数据结果相 比较,如果误差很小,说明网络的权值建立正确; 如果误差较大,说明网络的权值建立有误,需要重 新进行网络的训练。 将训练样本训练完毕后,即可进行制票终端的 故障诊断。只要实际输入模式接近于某一个训练时 的学习样本的输入模式,则可产生出接近学习样本 的输出结果,也就是所谓的自联想功能。同时,由 于网络计算上的大量并行性,当机器运行状况改 变,出现网络学习未考虑的情况时,系统亦能给出 正确分类结果。同时将新数据并入网络,实现系统 的自适应。一般来说,学习的故障实例样本越多,诊 断结果的准确率越高。 2 BP 2-J 法 BP算法因其简单、易行、计算量小、并行性强 等优点,是目前神经网络训练采用最多也是最成熟 的训练算法之一。BP算法的实质是求解误差函数 的最小值问题,由于它采用非线性规划中的梯度下 降法(Gradient Descent),按误差函数的负梯度方向 修正权值。其主要思路是如果求出训练网络的指标 函数误差。 E= ( 一 )。/2 一般的B P算法称为标准误差逆传播算法,也 就是对应每一次输入都校正一次权值。这种算法不 其计算流程如图2。 图2 BP算法流程图 3 铁路制 终端敞I;夺诊断的 川 3.j 铁路 ̄…1:11,h.、i终端故障诊断的坫本结构 铁路客票系统扩充制票终端故障诊断系统后的 设想体系结构如图3。 (1)知识获取机构:系统获取和管理知识的主 要机构,为修改知识库提供手段; (2)数据库:用于系统的状态监测,便于测量 必要的测量数据,用于实时监测系统正常工作与 否。该数据库还可以人为添加; (3)神经网络知识库:保存故障现象同已有神 经网络模型之间的匹配知识,并获取诊断现象的有 关信息,为诊断与学习提供证据; (4)诊断信息的获取:诊断系统的诊断信息可 以通过测试的方法获得当前的状态信息,也可以通 维普资讯 http://www.cqvip.com 管理与维护 用户领域专家AI专家 韶接目 圭控计算机 街I l 解释机构 l I诊断信息获取 客 西 神经网络知识库ll 诊断推理 ll 数据库 局 域 故障诊断系统 网 络 路 由 铁路客票制票设备 厂] ————————r—————一 [ 壹口 i I IO接13电路 礴蠡件状懑 II采样模块 lI 制票传感器 I状态采样 I I I 控制电路 采样模块 囝3故障诊断系统 过人机交互获取,或者是通过人机交互直接输入; (5)诊断推理:系统的核心部分,用于控制整 个系统的运行。根据用户输入的信息或状态监测得 到的系统工作信息,利用诊断知识库中的知识,并 根据征兆事实按一定的问题求解策略,进行推理诊 断,最后给出诊断结果,作出维修对策。 3.2铁路制票终端故障诊断l:作原plI 铁路制票终端从硬件功能上分为3级,第1级 为各个子系统(包括计算机、制票机等),第2级为 制票机的部件级(包括电路板及机械部件),计算机 的硬件和软件;第3级为制票机单元电路或元器件。 由于计算机为非专用产品,所以只作1、2级诊断, 不进行3级诊断。相应的采用神经网络系统进行诊 断时分3级进行。第1级建立在系统结构或功能模 块级,判断是计算机还是制票机出现故障;第2级 建立在计算机软硬件级或制票机硬件模块级。 当制票终端出现故障时,把故障信息输入给 神经网络,神经网络通过自学习、自组织,然后进 行自我调整治理或输出合理的解决办法。例如,在 1级诊断时,判断出是计算机故障。在2级诊断中, 如果计算机各端El通讯正常,但不能和制票机联 机,则判断制票机驱动安装错误,此时可以自动更 新驱动。 第1 7卷第6期 4仿典研究 采用MATLAB的神经网络工具箱进行仿真,其 故障诊断可以划分为3级,相应的BP神经网络进行 故障诊断时可分为3步。 (1)系统的各子系统的故障诊断。判断故障发 生在计算机上还是制票机上; (2)制票机的部件级诊断或计算机的软硬件级 诊断。由于制票机为机电一体化产品,运动部件较 多,易出现故障。因此,这里就以制票机子系统出 现故障为例。 故障征兆集合={不制票,印票不切票,切票位 置不对,制白票),其量化集合为X={xl,x2,x3,x4}; 故障原因集合=f无故障,通讯接El故障,接口 电路故障,位置传感器故障,步进电机故障,直流 电机故障,电路板故障),其量化集合为Y={Y1,y2, y3,y4,y5,y6,y7); 模拟训练时,输入输出样本如表l。 表1 模拟训练输入输出样本 (3)元件级故障判断。方法同(2),由相应的 网络训练后的结构表示制票机电路板、动态组合元 件和结合部件的故障模式。 5 结水 BP神经网络应用在故障诊断中,不但能解决故 障,更能有效地预报故障,而且能自动修复部分故 障,降低窗El售票的故障率,减少人员的工作量。利 用铁路售票专用网络,还可以进行远程诊断,从而, 设备生产厂商可以直接远程维护,提高疑难杂症的 诊断准确性,从而逐步实现远程诊断。 参考爻I敞: 【1】刘伯鸿.基于神经网络联锁系统故障诊断专家系统的研 J】.铁路计算机应用 2006,15(4), [2】张建民,智能控制原理及应用[M】.北京:j台金工业出版社, 2003.
因篇幅问题不能全部显示,请点此查看更多更全内容