NewInsightsintotheAnti-inflammatoryMechanismsofGlucocorticoids:AnEmergingRolefor
Glucocorticoid-Receptor-MediatedTransactivation
SofieVandevyver,LienDejager,JanTuckermann,andClaudeLibert
DepartmentforMolecularBiomedicalResearch(S.V.,L.D.,C.L.),FlandersInstituteforBiotechnology,andDepartmentofBiomedicalMolecularBiology(S.V.,L.D.,C.L.),B9052Ghent,Belgium;andInstituteforGeneralZoologyandEndocrinology(J.T.),UniversityofUlm,D-89081Ulm,Germany
Glucocorticoidsareanti-inflammatorydrugsthatarewidelyusedforthetreatmentofnumerous(autoimmune)inflammatorydiseases.Theyexerttheiractionsbybindingtotheglucocorticoidreceptor(GR),amemberofthenuclearreceptorfamilyoftranscriptionfactors.Uponligandbinding,theGRtranslocatestothenucleus,whereitactseitherasahomodimerictranscriptionfactorthatbindsglucocorticoidresponseelements(GREs)inpromoterregionsofglucocorticoid(GC)-induciblegenes,orasamonomericproteinthatcooperateswithothertranscriptionfactorstoaffecttranscription.Fordecades,ithasgenerallybeenbelievedthattheundesirablesideeffectsofGCtherapyareinducedbydimer-mediatedtransactivation,whereasitsbeneficialanti-inflam-matoryeffectsaremainlyduetothemonomer-mediatedtransrepressiveactionsofGR.Therefore,currentresearchisfocusedonthedevelopmentofdissociatedcompoundsthatexertonlytheGRmonomer-dependentactions.However,manyrecentreportsunderminethisdogmabyclearlyshowingthatGRdimer-dependenttransactivationisessentialintheanti-inflammatoryactivitiesofGR.ManyofthesestudiesusedGRdim/dimmutantmice,whichshowreducedGRdimerizationandhencecannotcontrolinflammationinseveraldiseasemodels.Here,wereviewtheimportanceofGRdimersintheanti-inflammatoryactionsofGCs/GR,andhencewequestionthecentraldogma.WesummarizethecontributionofvariousGRdimer-inducibleanti-inflammatorygenesandques-tiontheuseofselectiveGRagonistsastherapeuticagents.(Endocrinology154:993–1007,2013)
lucocorticoids(GCs)arecriticalregulatorsofawidevarietyoffundamentalprocesses,includingmeta-bolichomeostasis,cellproliferation,inflammatoryandimmuneresponses,development,andreproduction(1–3).Atpharmacologicconcentrations,GCsdisplaypotentan-ti-inflammatoryeffects.Hence,numerousautoimmune,inflammatory,andallergicdisorders,suchasasthma,rheumatoidarthritis,ulcerativecolitis,andallergicrhini-tis(4,5),areoftentreatedwithsyntheticGCs,suchasdexamethasoneandprednisolone.Despitetheirexcellentanti-inflammatoryefficacy,theuseofGCsastherapeuticsisoftenrestrainedduetotwomajordrawbacks.First,long-termtreatmentwithGCsisoftenaccompaniedby
ISSNPrint0013-7227ISSNOnline1945-7170PrintedinU.S.A.
Copyright©2013byTheEndocrineSociety
doi:10.1210/en.2012-2045ReceivedOctober12,2012.AcceptedJanuary4,2013.FirstPublishedOnlineFebruary5,2013
G
severesideeffects,suchasdiabetes,osteoporosis,hyper-tension,andmuscleatrophy(6,7).Second,theoccurrenceofGCresistancealsolimitsthesuccessofmanyGC-basedtherapies.
GCsexerttheirfunctionsbybindingtotheirintracel-lularreceptor,theglucocorticoidreceptor(GR),whichisaligand-inducibletranscriptionfactorbelongingtothenuclearreceptorsuperfamily(8).TheGRisamodularproteincomposedofthreemajorfunctionaldomains:theN-terminaldomain,thecentralDNA-bindingdomain(DBD),andtheC-terminalligand-bindingdomain(LBD).TheDBDconsistsoftwozincfingersimportantforGRdimerization,nucleartranslocation,andDNAbinding.
Abbreviations:AIA,antigen-inducedarthritis;AP-1,activatorprotein1;CIA,collagen-inducedarthritis;COX2,cyclooxygenase2;DBD,DNA-bindingdomain;DNBS,dini-trobenzenesulfonicacid;GC,glucocorticoid;GILZ,GC-inducedleucinezipper;GR,glucocorticoidreceptor;GRE,GRresponseelement;JNK,c-junN-terminalkinase;LBD,ligand-bindingdomain;LPS,lipopolysaccharide;MR,mineralocorticoidreceptor;NF-B,nuclearfactor-B;nGRE,negativeGRE;SEGRAs,selectiveGRagonists;TA,transactivation;TR,transrepression.
Endocrinology,March2013,154(3):993–1007endo.endojournals.org993
994VandevyveretalAnti-inflammatoryPotentialofGRDimersEndocrinology,March2013,154(3):993–1007
adrenalglandinacircadianrhythmandundergopulsatilesecretion(22–24).
AlthoughinactiveGRisfoundprimarilyinthecytoplasm,itisnotrigidlycompartmentalized.GRshuttlescontinuouslybetweenthenucleusandthecytoplasmthroughthenuclearporechannel(reviewedinRef.15).Nevertheless,uponligandbinding,GRundergoesconformationalchangesandismainlyfoundinthenucleusduetoitsligand-inducednucleartranslocation.Inthenucleus,GRmediatestheup-regulationofnu-merousgenesanddown-regulationofothersinacoordinatedfashion.
Figure1.GeneralStructureoftheGRGR(human)iscomposedofanN-terminaldomain(NTD),
PositiveregulationisoftenmediatedaDBD,ahingeregion,andaC-terminalLBD.TheGRDBDcontainstwozincfingersinwhichthe
bythebindingofGRtoGR-bindingzincmoleculeislocatedbetweenfourcysteineresidues.InGRdim/dimmiceA458(red)ismutated
toathreonine.ThemutantGRcannotformdimers.sites.Thebest-describedmechanism
oftranscriptionalactivationisthedi-rectbindingofGRhomodimersto
Eachzincfingercontainsazincatombetweenfourcys-so-calledGRresponseelements(GREs)inthepromoter
teineresidues.Thesecondzincfingerismoreimportant
regionsofGC-induciblegenes(25).Infact,GRho-forGRdimerization.TheDBDandLBDarelinkedbya
modimerscanbindinthemajorgrooveofDNAviatheir
hingeregion,whichallowsnucleartranslocationofGR
DBD-containingtwozincfingersandthustargetaGRE
(9–11)(Figure1,upperpanel).Additionally,GCscanalso
(5,26).TheconsensusGREsequenceisaninvertedim-bindtoanothernuclearreceptor,themineralocorticoid
perfecthexamericpalindromeseparatedbyaspacerof3
receptor(MR),witha10-foldhigheraffinitythanwith
bp(5Ј-AGAACAnnnTGTTCT-3Ј,inwhich“n”isanynu-GR(12),butinterferenceofGCsinMRsignalingislimitedcleotide)(5,27).ThesequenceoftheGREvariesamongduetothetopicalrestrictionofMRexpression.Whereasdifferentpromoters,andthereforetheGREcanbecon-GRiswidelyexpressed,MRisexpressedonlyincertainsideredasasequence-specificallostericliganddirectingtypesofcells(andregulatessaltandwaterhomeostasis).thetranscriptionalactivityofGR(28,29).However,re-Furthermore,theactionofGCsthroughtheMRislimitedcentglobalChIP-SeqdatarevealthatGRbindstoDNAbytheactivityof11-hydroxysteroiddehydrogenase2inmostlyviatheGREconsensusmotif(30).Additionally,cellsinwhichMRisexpressed(13,14).nexttotransactivation(TA)of“simple”GREmotifsbyInitsinactivestate,GRresidespredominantlyintheGRdimers,GRcancooperatewithothertranscriptioncytoplasm,whereitissequesteredinamultimericchap-factorsasamonomericproteintoinducetranscriptioneronecomplexconsistingofheatshockproteins(suchas(31,32)toso-called“composite”elementsorbya“teth-hsp90,hsp70,hsp90bindingproteinp23),immunophi-ering”mechanism.BindingofGRtoDNAleadstore-lins(eg,FKBP51,FKBP52,Cyp44,andPP5),andothercruitmentofdistinctcofactorsthatenablechromatinre-factorstopreventitsdegradationandtoassistinitsmat-modeling,RNApolymeraseIIbinding,andsubsequenturation(15–17).TheGRisconstitutivelyexpressedingeneinduction.ThemechanismsofGR-mediatedtran-virtuallyallcelltypes,butthedifferenttissue-specificpat-scriptionalrepressionortransrepression(TR),ontheternsleadtotissue-specificoutcomesindifferentdiseasesotherhand,aremorepromiscuousandpartlyinvolve(18,19).Furthermore,GR-mediatedeffectsarereadilyDNAbindingofhomodimericGRtosimplenegativeinfluencedbyepigeneticregulators,context,andotherun-GREs(nGREs)orinvertedrepeats(IR)withlessthanthreerecognizeddeterminants(20,21).Inaddition,thekeyspacerstospecificallyrepressgenetranscription(33–35).variablesthatdeterminetheGR-mediatedoutcomein-Furthermore,GC-activatedmonomericGRcannega-cludetimingandgenomicaccessibilityofGC-responsivetivelyregulategenetranscription,eg,bytetheringothergenes.Thenatureandmagnitudeofacell’sresponsetotranscriptionfactors,suchasnuclearfactor-B(NF-B)GCsalsodependonthelevelsofhormonessecretedbytheandactivatorprotein1(AP-1),orthroughcross-talkwith
Endocrinology,March2013,154(3):993–1007endo.endojournals.org995
CurrentConceptoftheAnti-inflammatoryMechanismofGC/GR:EmphasisonTR
Untilrecently,itwasgenerallybe-lievedthatTRoftranscriptionfac-torsbymonomericGRisthemaindeterminantoftheanti-inflamma-torypropertiesofGR,whereasitssideeffectsresideinitsTApotential(36,38,39,46).Thisconcepthasbeenreviewedextensively(31,41,47).Briefly,itisknownthatTA,throughdirectDNAbinding,in-ducestheexpressionofseveralen-zymes(eg,phosphoenolpyruvatecarboxykinase,tyrosineaminotransfer-ase,andglucose6-phosphate)involvedinglucoseandlipidmetabolism.Hence,uncontrolledup-regulationofthesegenescouldaccountforthediabetogeniceffectsofGCs,which
Figure2.GRSignalingActivatedGRcanleadtoeitheractivationorrepressionofgeneresultinhyperglycemiaandde-transcription.Leftgreenpanel:TAismediatedby(i)bindingofGRdimerstoGRE,(ii)DNA
creasedcarbohydratetolerance(1,
bindingofGRinconcertwithanothertranscriptionfactor(TF:XY),or(iii)bindingofGRtoaTF
48).Ontheotherhand,itisbelievedbyatetheringmechanism.Rightredpanel:TRismainlyachievedby(iv)directbindingofGR
dimerstonGRE(simpleorIR),(v)DNA-bindingcross-talkwithanotherTF,(vi)interferenceofthattheanti-inflammatoryactionsmonomericGRwiththeTAactivityofTFsbyatetheringmechanism,(vii)competitionforanofGCtherapyarepredominantlyre-overlappingbindingsite(competitiveGRE),(viii)sequestrationofaDNA-boundTF,or(ix)
latedtotheTReffectsofGR(11,49)competitionforbindingcofactorswithotherDNA-boundTFs.
becausesomeinflammatorypro-cessescouldstillberestrictedinadim/dimothertranscriptionfactorsandbindingto“composite”mousestrain(GR)inwhichGRislargelydimeriza-elements(36,37).Foranoverviewofthefundamentaltiondefectiveduetoreplacementofanalaninebyathre-aspectsofGRtranscriptionalregulation,seeFigure2.onine(A458T)(11,50,51).Thismutationislocatedinthe
Theanti-inflammatoryeffectsofGRarebelievedtosecondzincfingerintheDBDofGR(Figure1,lowergenerallyresultfromtetheringprotein-proteininterac-panel)andcausesreducedbindingtoDNAand,moretionsbetweenGRandothertranscriptionfactors,partic-specifically,totheGRE(11,50,51).
TRofinflammatorytargetgenesmostofteninvolvesularlyNF-BandAP-1,whichresultsinTRofawide
varietyofproinflammatorygenes.Ontheotherhand,theinterferenceofGRwiththeactivityofDNA-boundpro-debilitatingGC-mediatedeffectsarethoughttobecausedinflammatorytranscriptionfactors,suchasNF-B,cAMP
responseelement-bindingprotein,interferonregulating
byTAofsimpleGREgenes(38,39).Accordingly,so-factor-3,nuclearfactorofactivatedTcells,signaltrans-calledselectiveGRagonists(SEGRAs)thatfavorTRwere
ducersandactivatorsoftranscription,Th1-specificTbox
developedastherapeuticagentswithreducedsideeffects.
transcriptionfactor,GATA3,andAP-1(52–54).Because
ExamplesareRU24858,compoundA,AL-438,LGD5552,
thesetranscriptionfactorsregulatetheexpressionofin-andZK216348(40–45).However,morerecentdataflammatorygenes,GR-mediatedtetheringofthesetran-showthattheTApotentialofGRisindispensableforitsscriptionfactorseventuallyleadstorepressionofalargeanti-inflammatoryproperties,atleastincertaindiseasenumberofproinflammatorymediators:cytokines(includ-settings.Here,weprovideanoverviewoftheanti-inflam-ingTNF,granulocytemacrophagecolonystimulatingfac-matorymechanismsofGR,focusingmainlyontheinduc-tor,IL-1,IL-2,IL-3,andIL-6),chemokines(eg,eotaxin,tionofanti-inflammatorygenesbyGRasahomodimericmacrophageinflammatoryprotein[MIP],andregulatedtranscriptionfactorandwithemphasisoninvivostudies.andnormalTcellexpressedandsecreted[RANTES]),en-
996VandevyveretalAnti-inflammatoryPotentialofGRDimerszymes(suchasinduciblenitricoxidesynthaseandcyclo-oxygenase2[COX2]),andadhesionmolecules(eg,inter-cellularadhesionmolecule1andvascularcelladhesionmolecule1).Thus,negativeregulationbytetheringhasbecomeaparadigmfortheanti-inflammatoryandim-mune-suppressiveactionsofGR.Themost-studiedcross-talkmechanismsarethosebetweenGRandNF-B,GRandAP-1,andGRandinterferonregulatingfactor-3(41,42,45,55).
StudiesonGRdim/dimMice:TheEmergingRoleofGRDimerizationintheAnti-inflammatoryFunctionofGR
Asmentionedabove,moststudiesclaimthatinteractionofmonomericGRwithproinflammatorytranscriptionfac-torsisthebasisofitsanti-inflammatoryactivity.How-ever,thecontributionofGRdimerstoitsanti-inflamma-torypropertyremainscontroversial.MountingevidenceindicatesthattheTApotentialofGRdimersisrequiredforexecutionofthecompleteanti-inflammatorycascade(49,56–59).MoststudiesinvolvedexperimentsinGRdim/dimmice.
Importantly,GRE-dependentgenetranscriptionisdi-minishedincellsoriginatingfromGRdim/dimmice,asshownbyimpairedinductionofamousemammarytumorvirus-CATreporterinGRdim/dimmouseembryofibroblastcellsandGR-induciblegluconeogenicenzymes,suchasg6pandpck1,inliverlysatesofGRdim/dimmiceandre-duced(butnotabsent)GCregulationofgenesintheliverasrevealedbygenome-wideexpressionprofiling(10,11).However,therepressingfunction(cross-talkwithAP-1andNF-B)ofGRisstillintactinGRdim/dimmice(11,49,51,60).
Almostallevidencediscussedinthisreviewisbasedontheanalysisofthesingle-pointmutantA458T,otherwiseknownastheGRdim/dimmutant.However,oneshouldconsiderthesedatawithcaution,becausemountingevi-denceindicatesthatadditionalresiduesareindispensableforGRdimerization.TheideathatGRdim/dimmutantscannotformdimershasbeenchallengedbyarecentstudy(61).Humanosteosarcoma(U-2OS)cellsexpressingtheGRwt/wtreceptororthehGRdim/dim(A458T)orhGRdim4(A458T,R460D,D462C,andN454D)mutantwereusedwithGRE-drivenreportersintransientreportergeneas-says.TheresultsrevealedthatthehGRdim4mutantisevenmoreunresponsivetosteroidsthanthehGRdim/dim(A458T)mutant.ThesefindingsareinagreementwiththeresistanceofhumancelllinescarryingthesemutationstoGC-mediatedapoptosis(61).ThesefindingsareinlinewithearlierpublisheddatashowingthatboththeGRdim/dimEndocrinology,March2013,154(3):993–1007
andGRdim4mutationsintheD-loopstronglyinhibitedGRdimerizationandGR-mediatedTAbutdidnothampertherepressionofAP-1andNF-B(51).Indeed,Jewelletal.(61)alsoshowedthattheTRcapacityofhGRdim/dimwasindeedunaffected.Whatisparticularlyinterestingisthatimmunoprecipitationexperimentsshowedthatboththehuman(h)GRdim/dimandhGRdim4receptorscouldpromptlyformdimers.Ofcourse,thesestrikingfindingsshouldbeexperimentallyconfirmedfurther.Further-more,Savoryetal.(62)havedemonstratedanoveldimerinterfaceintheLBDofGR.Mutatingthisdimerinterface’smostimportantresidues(P625andI628)toalaninesre-sultedina10-folddecreaseindimerizationaffinityrela-tivetowild-type(WT)LBD.Furthermore,byusingamousemammarytumorvirusreporterassay,Bledsoeetal.(63)showedthattheresiduesofthisdimerinterfacearealsoimportantfortheGRTAfunction,.Inaddition,morerecentgeneexpressionprofilingbyFrijters(10unambig-uouslyconfirmsthattheGRdim/dimmutantcanstilltrans-activatesomegenes,albeitnotasstronglyasitswildtypecounterpart.
Takentogether,alltheabove-mentionedfindingsindi-catethatthesingle-pointmutationintheDBD,namelyA458TintheGRdim/dimmutant,maynotbesufficienttocompletelyabolishdimerizationandthusGR-mediatedTA.Mostprobably,theGRdim/dimmutantcanstillbindtoasetofGR-responsivepromoters,althoughinacelltype-andgenepromoter-specificmanner,byformingmultim-ersindependentlyoftheDBD-dimerinterface.Neverthe-less,allstudiesperformedwiththeGRdim/dimmutantandsubsequentfindingsdoprovethatthissingle-pointmuta-tionreducesdimerization,andthattheGR-DNAbindingpotentialandTAarecriticallyimportantintheanti-in-flammatoryactionsofGR.
MicecarryingtheGRdim/dimmutation(11)areviable,incontrasttothefullGRknock-outmouse(64).GRdim/dimmicearenormalinsizeandappearnormal,buttheydoshowsomeanomalies,suchasincreasedexpressionofPomcinthepituitarygland,whichdemonstratesthelossofnegativecontrolofPomctranscriptionbyGRdimers.ThisresultsinelevatedlevelsofsecretedACTHandGCs(11,65).Additionally,studiesonGRdim/dimmicerevealedthatGRdimerizationisrequiredforGC-mediatedthy-mocyteapoptosisandlong-termproliferationoferythro-blasts(11).Anothercellularprocessthatnecessitatesac-tionofGRdimersisadipogenesis:thisprocesscouldbepromotedbyinductionofKrüppel-likefactor15byadimerizedGR(66).Furthermore,GRdimersarealsore-quiredforthetask-relatedfacilitatingeffectsofGCsonspatialmemory(65).Incontrast,dimerizationofGRisdispensableforepidermalandhairfollicledevelopmentduringembryogenesis(67).
Endocrinology,March2013,154(3):993–1007endo.endojournals.org997
Table1.
IdentificationoftheroleofGRdimersindifferentphysiologicalresponsestoGCsbyusingGRdim/dimmice
Effects
GRDimerizationRequiredRequiredRequiredDispensableRequiredRequiredDispensableDispensableRequiredRequiredRequiredDispensableRequiredRequired
ImportantCellTypesIL-17producingT-cellsMacrophagesNeutrophilsMacrophages
T-lymphocytesMacrophagesIntestinalepithelialcellsEnterocytes
OsteoblastsOsteoclastsUnknownUnknownFibroblastsThymocytesUnknownErythroblastsUnknown
References(56)(58)(57)(49,60)(59)(124)(85,125)(126)(123)(66)(11,61)(67)(11)(65)
Resolutionofinflammation
Antigen-andG6PI-inducedarthritisContacthypersensititivity
LPS-andCLP-inducedsepticshock
PMA-inducedirritativeskininflammationTNF-inducedinflammationSideeffects
HyperglycemiaOsteoporosis
SkeletalmuscleatrophyWoundrepairCellularprocessesAdipogenesisApoptosis
EpidermaldevelopmentduringembryogenesisProliferationSpatialmemory
CLP,cecalligationandpuncture;PMA,phorbolmyristateacetate.
ThecontributionoftheDNA-bindingfunctionofGRtotheanti-inflammatoryeffectsofGRwasuntilrecentlystronglyunderestimated.SeveralstudieshaveexploitedtheresponseofGRdim/dimmiceinseveralinflammatorydiseasemodels(Table1).IthasbeenshownthatDNA-bindingGRdimersarenotrequiredinGCtherapyofirritativeskininflammationinducedbyphorbolester(phorbolmyristateacetate),andthatGRmonomerscaninhibitinflammationinthismodel(49,60).Incontrast,GRdim/dimmicewererefractorytoGCtreatmentinamousemodelofcontacthypersensitivity,whichmimicsallergiccontactdermatitis(58).ThesedataindicatethatdimerizationofGRandsubsequentGRE-dependenttran-scriptionareindispensablefortherestrictionofcertainallergicinflammatorydisorders.Similartocontacthyper-sensitivity,Baschantetal.(56)showedthatGCsrequireGRdimeractivitytorestraininflammationintwomurinerheumatoidarthritismodels:antigen-inducedarthritis(AIA)andglucose-6-phosphateisomerase-inducedarthri-tis.GCtreatmentdidnotprotectGRdim/dimmice,indicat-ingthattheDNA-bindingcapacityofdimericGRisrequiredforGC-mediatedsuppressionofarthritisinflam-mation.Moreover,GRdim/dimmicearealsohighlysuscep-tibleinseveralsepticshockmodels,suchassepsisinducedbylipopolysaccharide(LPS)orcecalligationandpunc-ture,andinflammationinducedbyTNF(57,59).Thesestudiesprovideevidencethatinsepticshock,thethera-peuticactionsofendogenousandexogenousappliedGCsrequireGRdimerization.Takentogether,thesedataun-derminetheconceptthatGRmonomersareresponsibleformostoftheanti-inflammatorypotentialofGCsandclearlyshowthatGRdimer-dependentTAisessentialfortheanti-inflammatoryactivitiesofGR.
GRDimer-DependentTranscriptionalActions
GR-mediatedTAofanti-inflammatorygenes
GeneexpressionprofilingofliversofGRwt/wtandGRdim/dimmicetreatedwithprednisolonerevealedthatmanygenescouldnotbesignificantlyinducedinGRdim/dimmice,indicatingthattheirinductiondependsonGRdimers(10).Manyofthesegeneshavewell-knownanti-inflammatoryactionsand,hence,mightcontributetotheanti-inflammatorypropertiesofGR.Here,wewillfocusonafewprominentgenesandelaborateontheiranti-inflammatoryactions.AcompleteoverviewofallGC-inducibleanti-inflammatorygenesidentifiedsofarandtheireffectsontheproinflammatorycascadearedepictedinTable2andFigure3.
WhereasDusp1,Tsc22d3,andAnxa1areonlyjustafewGC-induciblegenesmediatingsomeoftheanti-in-flammatorycapacitiesofGR,microarrayprofilingdataindicatethatmanyothergenesarepositivelyregulatedbyGRandplayaputativeroleinthedisputeagainstinflam-mation(10,57,68).However,identificationofthesegenesandtheirfunctionalityisstillinitsinfancy,whichmeansthatthecomplexityoftheanti-inflammatoryna-tureofGRisstillfarfromfullyunderstood.
MAPKphosphatase1ordualspecificityphosphatase1(MKP-1orDusp1)
Dualspecificityphosphatase1(encodedbyDusp1)isoneofthemostpotentanti-inflammatoryGR-inducibleproteins.Itisamemberofthedual-specificityphospha-tases,whichinclude10members,andcatalyzesthede-phosphorylationandsubsequentinactivationofboth
998VandevyveretalAnti-inflammatoryPotentialofGRDimersEndocrinology,March2013,154(3):993–1007
Table2.
SymbolADORA3ADRB1ANPEP
ListofGC-InducedAnti-inflammatoryGenes
Description
AdenosineA3receptor2-Adrenergicreceptor1AminopeptidaseN
Anti-inflammatoryMechanism
References(68)(128)(129)(99–103)(130–132)(133–139)(68,140–143)(68)(144)
(145–148)(149)(59,71–75)(68)
(150,151)(68)
(68,152,153)(154,155)(156)
(46,50,157,158)(159)(68)(160)
(161,162)(163)(160)(160)(164)(165)(82–84,86–90)(137,
166–171)
Inhibitionofeosinophilchemotaxis
SuppressionofJNKsignaling,suppressionofcytokinesecretionCleavesantigenpeptidesboundtomajorhistocompatibilitycomplexclassIImoleculesofpresentingcells
ANXA1Annexin-1Inhibitionofphospholipase2(cPLA2),COX-2andNF-BASBT/SLC10a2Apicalsodium-dependentbileBileacidtransporter
acidtransporter
CC10Claracell10kDaInhibitionofphospholipase2(cPLA2);bindshydrophobic
ligands,eg,phospholipidsandprostaglandins;inhibits
chemotaxisandphagocytosisofneutrophilsandmonocytes
CD163HemoglobinscavengerClearanceofproinflammatoryhemoglobin-haptoglobin
receptorcomplexes
CD1dAntigen-presentingMHCI-mediatedimmunosuppression(stimulatesinhibitoryNK
glycoproteinandinvariantT-cells)
CYP1A2Thymosinand4sulfoxideInhibitsneutrophilchemotaxis
DEXRAS1/AGS-1RAS,dexamethasone-inducedInhibitsligand-dependentsignalingbytheGi-coupledFPRand
1subsequentlyERK-1/2activation;blocksPKCkinaseactivity
DOK-1Dockingprotein1Inhibitoryadaptorprotein(suppressesactivationofMAPK
cascade)
DUSP1/MKP-1Dualspecificityphosphatase1InhibitsMAPKs(JNK/p38/ERK)FCARReceptorforFcfragmentofInteractswithIgA-opsonizedtargets
IgA
FOXP3ForkheadboxP3SuppressionofTregcellsFPRFormylpeptidereceptorSuppressionofcytokinesecretionIL-10IL-10SuppressionofTregcells,inhibitsexpressionof
proinflammatorycytokines,inhibitsNF-Bactivation
IL-1r2IL-1receptortypeIIDecoyreceptorforIL-1receptorIL-1raIL-1receptorantagonistCompetitiveinhibitionofIL-1bbindingtoitsreceptorIB␣InhibitorofNF-BInhibitionofNF-BKLF2LILRB1MT1X
p11/S100A10p57Kip2PAI-1RGS-2SLAPSLPI
TSC22D3/GILZTTP
Kruppel-likefactor2
Leukocyteimmunoglobulin-likereceptor,subfamilyBmember1
Methallothionein1X
S100calciumbindingproteinA10
Cyclin-dependentkinaseinhibitor1C
Plasminogenactivatorinhibitor1
RegulatorofG-proteinsignaling2
Src-like-adaptorprotein
Secretoryleukocytepeptidaseinhibitor
TSC22domainfamily,member3Tristetraprolin
InhibitionofNF-BandAP-1
MHCI-mediatedimmunosuppressionFreeradicalscavenger
Inhibitionofphospholipase2(cPLA2)Cyclin-dependentkinaseinhibitorInhibitionofthefibrinolyticcascadeReducesGq-linkedsignaling
ReducesT-cellsignalingbyinteractingwithSyk/Zap70Inhibitorofserineproteases
InhibitionofNF-B,AP-1,Raf-1andRasDestabilizesmRNAandincreasesmRNAturnover
PKC,proteinkinaseC.
threonineandtyrosineresiduesinMAPKs,hencethenameMAPKphosphatases(MKPs)(69,70).Therearethreewell-definedMAPKsubfamilies:theERKs,c-JunN-terminalorstress-activatedproteinkinases(c-junN-terminalkinase[JNK]orstress-activatedproteinkinase),andp38MAPK.Thesekinasesplayanintricateroleinthehost-immuneresponseleadingtotheactivationofproin-flammatorytranscriptionfactors,suchasNF-BandAP-1,andensuingactivationofvariouscytokines,chemo-kines,andinflammatorymediators.MKP-1wasorigi-nallyidentifiedasaphosphatasespecificforERKMAPKs(71,72).However,consecutivestudieshaveshownthat
Endocrinology,March2013,154(3):993–1007endo.endojournals.org999
Figure3.AnOverviewofAllKnownGC-InducibleAnti-inflammatoryGenesandTheirEffectsontheProinflammatoryCascade.GRcanresolveinflammationby(i)hamperingtheactivationofproinflammatorysignalingpathwaysthroughinductionofIL-1receptorantagonist(IL-1ra),IL-1rtypeII(IL-1r2),secretoryleukocytepeptidaseinhibitor(Slpi),thymosin4sulfoxide,adenosineA3receptor(ADORA)andaminopeptidaseN(ANPEP);(ii)interferingwithsignalingcascadesthroughDok-1,SLAP,Dexras-1,RGS-2,Gilzandp57Kip2;(iii)inhibitionofsubsequentMAPKactivationviaGilz,MKP-1,p57Kip2andB2adrenoceptor;(iv)interactingofGilz,IB␣,Annexin-1,KLF2andIL-10withproinflammatory
transcriptionfactors;(v)inducingmRNAdestabilizationthroughTTP;(vi)inhibitingproteinfunctionviainductionofAnnexin-1,Cc10,IL-10,p11,p57Kip2,FPR,CD1d,LILRB1,Foxp3andMT1X;(vii)negativelyregulatingvariousprocessesthroughANPEP,PAI-1,Foxp3,B2adrenoceptor,Cc10,ASBT,LILRB1,FCARandCD163.
MKP-1hasapreferenceforJNKandp38MAPKs(73–75).TheinteractionofMKP-1withitssubstrates,theMAPKs,increasesitsactivityupto6-to8-fold(76).TheregulationofMkp1isofmuchinterestbutremainscontro-versial.Recently,ChIPsequencingrevealedaGREsiteinthepromoterregionofMkp1(77,78).Moreover,itwasshownthattheGC-mediatedinductionofMkp1isdependentonGRdimerizationwhencellsandtissuesareexposedtoGCsaloneorincombinationwithTNF(10,59),whereasMKP-1proteinissimilarlyinducedinGC-pretreatedcellsfollowedbyLPSinduction(79).Mkp1isexpressedinresponsetoGCsinawidevarietyoftissues,butitcanalsobeinducedbyseveralproinflammatorystimuli,suggestingthatMKP-1functionsasanegativefeedbackregulatorofMAPKsignal-ingandisconsequentlycriticalfortheresolutionofinflam-mation.MKP-1wasalsosuggestedtomediatetheprotectiveroleofendogenousGCsbyinterferingwithp38signalingduringLPS-inducedsepticshock(80).Knowledgeoftheim-portanceofMKP-1inthecombatagainstinflammationwasgainedfromstudiesonMkp1Ϫ/Ϫmice(foranoverviewofthe
useofMkp1Ϫ/ϪmiceinproinflammatorydiseasemodelsseeTable3).Additionally,anincreasingnumberofinvivostud-iesmakinguseofMkp1Ϫ/ϪmicedemonstratethatMKP-1contributestotheanti-inflammatoryresponsesofGCs.Forexample,GCscanprotectMkp1Ϫ/Ϫmiceonlypartlyagainstendotoxicshock(81)andTNF-inducedinflammatoryshock(59).Mechanistically,MKP-1protectsagainstTNF-inducedlethalshockbydephosphorylatingJNK,morespecificallyJNK-2(59).Furthermore,itwasshownthatdimerizationofGRisessentialforprotectionagainstacuteTNF-mediatedinflammationandcriticalforMkp1inductionandhencecontrolsactivationoftheproapoptoticJNK-2.Inthisrespect,thisstudywasthefirsttoprovethatGRdimerizationisalsoimportantintheregulationofTNF-inducedapoptosis(59).
ThesefindingstogethershowunambiguouslythatMKP-1hasapivotalroleasanegativefeedbackregu-latoroftheMAPK-signalingcascadeandhenceisim-portantinproinflammatorycytokineproductionandinnateimmunity.
1000VandevyveretalAnti-inflammatoryPotentialofGRDimersEndocrinology,March2013,154(3):993–1007
Table3.
UseofMkp1Ϫ/ϪMiceinSeveralDiseaseModels
Anti-inflammatory
MechanismInhibitionofp38InhibitionofMAPKInhibitionofJNKDeficiencyinCD4ϩTcellsroleforJNK?Inhibitionofp38Inhibitionofp38Inhibitionofp38Inhibitionofp38andJNKInhibitionofp38andJNK
Outcome
Enhancedmastcelldegranulation;increasedhypothermia
Severecolitis,mucosalhyperplasiaResistantResistant
Increasedcytokinelevels;increasedjoint-swelling;inflammationinankleandwristjoints
Inflammatoryboneloss
LowerlevelsofeNOSandlowerNO
production;increasedlevelsofarginaseI/IIImpairedbacterialclearance;increasedcytokinelevels;infiltrationofneutrophilsinlungs;increasedmortality
Increasedcytokineandchemokinelevels;greaterNOproduction;neutrophil
infiltration;severeorgandamage;highermortality
Increasedweightloss;impairedviralclearance
Greaterinfarctinjury
Increasedcytokinelevels;hypotension;respiratoryfailure;increasedNO
production;MOF;increasedmortalityIncreasedcytokineandchemokinelevels;increasedlethality
Increasedcytokineandchemokinelevels;enhancedintestinaldamage;increasedmortality;celldeath
NoresponsetoDexintermsofleukocyteinfiltrationandcytokinesuppression
References(172)(173))(174)(175)(176)(177)(178)(179)(180)
InflammatoryDiseaseModelAnaphylaxis
Colitis
Diet-inducedobesity
Experimentalautoimmuneencephalomyelitis(EAE)
Experimentalinductionofarthritis(EIA)Experimentalperiodontitis
Hypoxia3pulmonaryhypertensionInfectionwithgram-negativebacteria3sepsisInfectionwithgram-positivebacteria
Influenzaviralinfection
Ischemia-reperfusioninjury
LPS-inducedendotoxemiaandsepticshockPolymicrobialperitonitis(CaspandCLP)Stress
TNF-inducedacuteinflammationZymosan-inducedinflammation
DefectiveCD4ϩ/CD8ϩTcellresponsesϾroleforJNK?
Inhibitionofp38
Inhibitionofp38andJNKNomechanismdescribedInhibitionofp38andJNKInhibitionofJNK-2Inhibitionofp38andJNK
(175)(181)(81,176,182–184)(185)(184,186)(59)(79)
CLP,cecalligationandpuncture;Dex,dexamethasone;eNOS,endothelialNOS;MOF,multipleorganfailure.
GC-inducedleucinezipper(GILZ)
Tsc22d3(encodingGC-inducedleucinezipperorGILZ)isconsideredaprototypeofaGC-inducedgeneandisthereforeoftenrepresentedasamerereadoutproductoftheGC-inducedsignalingcascade.However,italsome-diatestheeffectsofGCsinimmunefunction.GILZbe-longstothefamilyofTGF--stimulatedclone22domain(TSC22D)proteins.Thisfamilyincludesgenestranscrip-tionallyactivatedbyTGF-andGCsinawidevarietyofcelllinesandtissues(82–84).Tsc22d3inductionbyGCsisinhibitedinGRdim/dimmice(Ref.85;ourunpublishedresults).Moreover,theTsc22d3promoterregiondis-playssixputativeGREmotifs,aswellasmotifsforothertranscriptionfactors.TheGILZproteinhasbeenreportedtobindtoRasandRaf-1andthedownstreamproinflammatorytranscriptionfactorsNF-BandAP-1(86,87).Rasisamembrane-associatedproteinactivat-inganumberofsignalingcascades,includingtheRAF-MEK-ERKandphosphatidylinositol-3kinase-AKTpath-ways(88–90).Furthermore,bybindingtoRaf-1,GILZinhibitsMEKandERKphosphorylationandsubsequentactivation.Inthisway,GILZinductionseemstobeoneofthemechanismsbywhichGCsregulatetheMAPK-sig-nalingcascade,albeitindirectly.Next,GILZhasalsobeenshowntointeractwithp65(subunitofNF-B)andbothc-Fosandc-Jun(subunitsofAP-1)(86,91).Theseanti-inflammatorypropertiesofGILZindicateanimmunemodulatoryrole.Theanti-inflammatoryactionsofGILZhavebeenconfirmedbyusingmousemodelsofchronicinflammatorydiseases,suchasdinitrobenzenesulfonicacid(DNBS)-inducedcolitis(amodelofinflammatoryboweldisease)(92),collagen-inducedarthritis(CIA)(amurinemodelofRA)(93),andexperimentalautoimmuneencephalomyelitis(amodelofmultiplesclerosis[(MS])(94).TheuseofGILZ-overexpressingtransgenicmicedemonstratedthatGILZcanantagonizethedevelopment
Endocrinology,March2013,154(3):993–1007ofcolonicinflammationinducedbyDNBS(92).Inaddi-tion,invivodeliveryofTsc22d3smallinterferingRNAinCIAmiceincreaseddiseaseseverity,indicatingthatGILZhasanimportantprotectivefunction(93).Moreover,invitro,GILZsmallinterferingRNAinhibitedthesuppres-sionofLPS-inducedcytokinesbyGCs(95).Furthermore,GILZadministrationhadamoreprotectiveeffectthantheadministrationofhighdosesofGCsinbothDNBS-in-ducedcolitisandCIA.Inaddition,theanti-inflammatoryactionsofGCs(up-regulationofGILZuponGCtreat-menthasalsoproveneffective)inpatientssufferingfromalcoholichepatitis(AH)aredependentonGilz(96).Insummary,thesedatashowthatGILZisakeymediatoroftheanti-inflammatorypropertiesofGCs.
Annexin-1
Annexin-1orlipocortin-1(encodedbyAnxA1)isamemberoftheannexinsuperfamilyofcalcium-andphos-pholipid-bindingproteins(97).ThehumanAnxA1pro-moterregioncontainsaGREelement,butwhetheritcanbeinducedinGRdim/dimmicehasnotbeenreported(98).Annexin-1wasoriginallydescribedasaGC-inducedpro-teininhibitingtheactivityofphospholipaseA2,whichisknowntocleavearachidonyl-containingphosphatidesinthecell(99,100).Arachidonicacidcanbefurthermodi-fiedbycyclooxygenases(COX)toyieldtheproinflamma-torymediatorsprostaglandinsandleukotrienes.An-nexin-1alsoinhibitsNF-B,bybindingtothep65subunitandtherebypreventsitsbindingtoDNAandtoCOX-2(101–103).Neutralizingantibodiesagainstannexin-1ab-rogatedtheinhibitoryactionofGCsintherathindpawcarrageenanedemamodelandinaratischemia-reperfu-sioninjurymodel(104).StudiesonAnxA-1Ϫ/Ϫmiceshowedthatannexin-1isprotectiveinAIA,bleomycin-inducedlungfibrosis,anddextransodiumsulfate-in-ducedcolitis:thediseasesweremoresevereinAnxA-1Ϫ/Ϫmice(105–107).Ithasalsobeensuggestedthatannexin-1isprotectiveinCIA,ulcerativecolitis,andchronicgran-ulomatousinflammation(102,108,109).Moreover,GCsexertednoinhibitoryeffectsinAnxa-1Ϫ/Ϫmiceinacar-rageenan-orzymosan-inducedinflammatorymodelorinAIA,suggestingthatannexin-1mediatesanti-inflamma-toryactionsofGCs(107,110).Annexin-1wasalsoshowntomodulatetherepairofgastricmucosalinjury,becausetreatmentwithanannexin-1mimeticsignificantlyen-hancedgastriculcerhealing(111)andtheuseofanan-nexin-1-basedpeptide,MC-12,resultedinameliorationofsymptomsinbothdextransodiumsulfateand2,4,6-trinitrobenzenesulfonicacid-inducedcolitismodelsinmice(112).Insummary,thesefindingsraiseinterestinannexin-1asaGC-inducibleeffectorofinflammationresolution.
endo.endojournals.org1001
GR-mediatedTRofnGREgenes
Figure2explainshowGRdimersarealsorequiredforTRofnGREgenes(33,34).Theseso-callednGREele-ments,comparabletonormalGRE,arecomposedoftwoinvertedrepeats(hexanucleotides)thatareeitheradjacentorseparatedbyoneor2bp(CTCC(n)0–2GGAGA;re-ferredtoasIR0,IR1andIR2,respectively)(35).However,theanti-inflammatorycapacityofGR-mediatedTRofnGREgenesisunknown.Nevertheless,arecentstudybySurjitetal.(35)indicatedthatTRofnGREgenesbyGRdimerscantranscriptionallyrepresstheexpressionofthecytokinethymicstromallymphopoietinthroughdirectbindingofdimericGRtoanGRE.ThismechanismcouldaccountfortheGR-mediatedrestrictionofatopicderma-titis.ThesefindingssuggestthatthesensitivityofGRdim/dimmiceinseveraldiseasemodelscanalsobeaccountedforbyreducedTRofnGREgenes.ItwasreportedthatnGREsarepresentinmorethan1000mouse/humanorthologgenes,someofwhichareknowntoencodeproinflamma-torymediators,whichindicatestheimportanceofthismechanismasanadditionallevelofanti-inflammatoryGRsignaling(35).ThecontributionofnGREgenestotheanti-inflammatorycascadeofGRremainstobeeluci-dated,butneverthelessposesaninterestingfieldofinves-tigation.Thoroughinvestigation,forexamplebystudyingtheexpressionprofilesofthesegenesinGRdim/dimmice,couldleadtotheidentificationofnewanti-inflammatoryGRtargets.
GC-mediatedproinflammatoryeffects
Theabove-mentionedstudiesdemonstratethestronganti-inflammatoryactionsofGCs.However,GCsarenotexclusivelyimmunosuppressive(113);GCsalsoassistinmaintainingandevenfacilitatingimmunity.Forexample,adrenalectomizedmiceandpatientswithAddison’sdis-easeproducenoGCs,andbothofthesearemoresuscep-tibletoinfection(114).Indeed,ithasbeenreportedthatGCscanhaveenhancingeffectsonimmunecells(115).Forexample,ithasbeenreportedthatdependingonthecom-positionoftheGR-AP-1dimer,GRcaninfluencetheac-tivityAP-1eitherpositivelyornegatively(116).Also,dis-ruptionofGCactioninosteoblastsresultedinamorerapidresolutionofinflammationintheK/BxNmodelofexperimentalarthritis,suggestingthatGCshaveaproin-flammatoryroleinthismodel(117).Moreover,inaddi-tiontotheirimmunosuppressiveeffectonTLRsignaling,GCsalsoaffectTLRexpression.Forinstance,thepro-moterofTLR2iscooperativelystimulatedbyGCsandTNF,throughthepresenceofafunctionalNF-Bsite,aGREelement,andasignaltransducersandactivatorsoftranscription-bindingelement(118).Generally,GCsareimmunestimulatorywithinthenormalphysiologicrange
1002VandevyveretalAnti-inflammatoryPotentialofGRDimersofhypothalamic-pituitary-adrenalaxisactivityandinhib-itorywhenGClevelsarehigher,asinchronicallystressedanimals.ThesefindingsclearlyindicatetheeffectsofGCsarecriticallydosedependent:supraphysiologicdosesofGCsmostprobablyresultinthewidelyGC-mediatedanti-inflammatoryeffects,whereaslowerdosescanbeimmunomodulatory.
ConclusionandFuturePerspectives
InthisreviewweemphasizetheimportanceofGRdimerizationinthecombatagainst,orresolutionof,in-flammation.Itisgenerallybelievedthattheanti-inflam-matoryaspectofGRresultsfromTRofproinflammatorygenesbythetetheringofmonomericGRtoothertran-scriptionfactors.However,somerecentstudiesusingGRdim/dimmutantmiceindicatethatGRdimersalsoac-countfortheresolutionofinflammationbyGR.Thephys-iologyofGR,ie,itsisoforms,posttranslationalmodifica-tions,therecruitmentofcofactors,anditssubsequentactionsarestronglytissuespecific.Moreover,thereissub-stantialtemporalvariationinGC-mediatedactions,andthisisreflectedintime-dependentgene-specificinduction.ThismightexplainthediscordantreportsontheresponseofGRdim/dimmiceindistinctinflammatoryenvironments(Table1).Itisworthwhiletodecipherthetissue-andtime-specificeffectsofGCsbecauseitcouldresolvethecon-tradictionsinthereportedresultsandclarifytheroleofGRactionsinseveraldiseases.
Interestingly,thecontinuingidentificationofnewGRE-dependentgeneswithanti-inflammatorypropertiesdemonstratesthattheTApotentialofGRisindispensableandindicatesthatthemechanismoftheanti-inflamma-toryactionofGRisfarfromcompletelyunderstood,in-cludingtheunidentifiedroleofnGRE-dependentgenes.In-depthknowledgeofthesemechanismswillelucidatewhetherGRdimerizationpreventingGRligandsare,infact,potentialtherapeuticsinthecombatagainstinflam-mationormightbedangerousratherthanhelpfulinthisaspect.Indeed,manyscientistshavetriedtodevelopSEGRAsthatpreferentiallyinducetheformationofmonomers(33,35,42,119–121).However,onlytwocompoundshavemadeittoclinicaltrialsfortopicalap-plication.Thisisprobablyduetothefactthatanincreas-ingamountofdataisbeingpublishedontheimportanceofGRdimersintheresolutionofinflammation.Further-more,theabove-mentioneddogmaischallengedbydatashowingthatGRdim/dimmicestillsufferfromsomesideeffectsuponGCtreatment(122),whichmeansthatnotallsideeffectscanbeexplainedbyreducedGRTAactivity.AlthoughitwasdemonstratedthatGRdimersplayan
Endocrinology,March2013,154(3):993–1007
intricateroleinthedevelopmentofhyperglycemiaandwoundrepair(123,124),GCtherapyinGRdim/dimmicestillreducesboneformationandattenuatesosteoblastdif-ferentiation,bothofwhicharecharacteristicsofGC-in-ducedosteoporosis(85,123–125).Next,GRdim/dimmiceandGRwt/wtmiceshowthesamedegreeofmuscleatrophyuponGCtherapy,suggestingthatmonomericGRissuf-ficienttocauseskeletalmuscleatrophy(126).ThiscouldbebecausenotallgenesthatarepositivelyregulatedbyGRareaffectedbytheGRdim/dimmutation,suchasgenesde-pendentoncompositeelementsortetheringmechanisms(Figure2).Itmustbenotedthatitisdifficulttodifferen-tiatebetweenTAandTRbecausetheGRcoactivatorGR-interactingprotein1isalsorecruitedtositesofGRre-pression,indicatingthatitalsohasacorepressorfunction(20).ThesefindingsindicatethatGR-interactingprotein1hasadualfunction:facilitatingbothTAandTRaspectsofGRactiondependingonthegenomiccontext.Thisin-dicatesthatdissociatingcompoundswilllikelystillinducecertainunwantedsideeffects.Inaddition,SEGRAsmightnotactivateallthemechanismsofTRactions.Forexam-ple,compoundAeffectivelyblocksNF-B,butnotAP-1(Ref.127andourunpublisheddata).Moreover,anemergingroleforGR-dimer-mediatedTRofnGREgenesalsoquestionstheuseofSEGRAs.Sofar,themolecularmechanismsofGR-inducedrestrictionofinflammationarenotcompletelyunderstoodandposeaninterestingfieldofinvestigation.In-depthknowledgeofthesemech-anismswillelucidatewhetherGRligandsorSEGRAsarepotentialtherapeuticsforinflammation,orwhethertheycouldbedangerousbecausetheymightcauseimmunos-timulationincertaininflammatorydiseases.Here,wewanttostressthatthoroughstudiesareneededtounravelthemechanisticdetailsoftheanti-inflammatorycascadeofGR,inaninflammation-specificway.Hence,theiden-tificationandfurtheruseofSEGRAsobviouslyholdabraketothefullcascade.Theidentificationofdisease-specificGRagonistswillbenecessarytoreducepatientsufferinganddecreaseeconomiccosts.
Acknowledgments
Addressallcorrespondenceandrequestsforreprintsto:ClaudeLibert,VIB-DepartmentforMolecularBiomedicalResearch/Ugent,Technologiepark927,Zwijnaarde9052,Belgium.E-mail:Claude.libert@dmbr.vib-ugent.be.
DisclosureSummary:Theauthorshavenothingtodisclose.
References
1.BeatoM,KlugJ.Steroidhormonereceptors:anupdate.HumRe-prodUpdate.2000;6:225–236.
Endocrinology,March2013,154(3):993–10072.BoumpasDT,ChrousosGP,WilderRL,CuppsTR,BalowJE.Glucocorticoidtherapyforimmune-mediateddiseases:basicandclinicalcorrelates.AnnInternMed.1993;119:1198–1208.
3.SchmidW,ColeTJ,BlendyJA,SchutzG.Moleculargeneticanal-ysisofglucocorticoidsignallingindevelopment.JSteroidBiochemMolBiol.1995;53:33–35.
4.PrigentH,MaximeV,AnnaneD.Clinicalreview:corticotherapyinsepsis.CritCare.2004;8:122–129.
5.RhenT,CidlowskiJA.Antiinflammatoryactionofglucocortico-ids–newmechanismsforolddrugs.NEnglJMed.2005;353:1711–1723.
6.McDonoughAK,CurtisJR,SaagKG.Theepidemiologyofglu-cocorticoid-associatedadverseevents.CurrOpinRheumatol.2008;20:131–137.
7.SchackeH,DockeWD,AsadullahK.Mechanismsinvolvedinthesideeffectsofglucocorticoids.PharmacolTher.2002;96:23–43.8.WhitfieldGK,JurutkaPW,HausslerCA,HausslerMR.Steroidhormonereceptors:evolution,ligands,andmolecularbasisofbi-ologicfunction.JCellBiochem.1999;Suppl32–33:110–122.9.BeckIM,VandenBergheW,GerloS,etal.Glucocorticoidsandmitogen-andstress-activatedproteinkinase1inhibitors:possiblepartnersinthecombatagainstinflammation.BiochemPharmacol.2009;77:1194–1205.
10.FrijtersR,FleurenW,ToonenEJ,etal.Prednisolone-induceddif-ferentialgeneexpressioninmouselivercarryingwildtypeoradimerization-defectiveglucocorticoidreceptor.BMCGenomics.2010;11:359.
11.ReichardtHM,KaestnerKH,TuckermannJG,etal.DNAbinding
oftheglucocorticoidreceptorisnotessentialforsurvival.Cell.1998;93:531–541.
12.DeKloetER,DerijkR.Signalingpathwaysinbraininvolvedin
predispositionandpathogenesisofstress-relateddisease:geneticandkineticfactorsaffectingtheMR/GRbalance.AnnNYAcadSci.2004;1032:14–34.
13.FiebelerA,MullerDN,ShagdarsurenE,LuftFC.Aldosterone,
mineralocorticoidreceptors,andvascularinflammation.CurrOpinNephrolandHypertens.2007;16:134–142.
14.FunderJW.Mineralocorticoid-receptorblockade,hypertension
andheartfailure.NatureClinPractEndocrinolMetab.2005;1:4–5.
15.VandevyverS,DejagerL,LibertC.Onthetrailoftheglucocorti-coidreceptor:intothenucleusandback.Traffic.2012;13:364–374.
16.CheungJ,SmithDF.Molecularchaperoneinteractionswithste-roidreceptors:anupdate.MolEndocrinol.2000;14:939–946.17.PrattWB,ToftDO.Steroidreceptorinteractionswithheatshock
proteinandimmunophilinchaperones.EndocrRev.1997;18:306–360.
18.BaschantU,LaneNE,TuckermannJ.Themultiplefacetsofglu-cocorticoidactioninrheumatoidarthritis.NatrevRheumatol.2012;8:645–655.
19.ZhouJ,CidlowskiJA.Thehumanglucocorticoidreceptor:one
gene,multipleproteinsanddiverseresponses.Steroids.2005;70:407–417.
20.UhlenhautNH,BarishGD,YuRT,etal.2012Insightsintoneg-ativeregulationbytheglucocorticoidreceptorfromgenome-wideprofilingofinflammatorycistromes.Molcell
21.VanderbiltJN,MiesfeldR,MalerBA,YamamotoKR.Intracellu-larreceptorconcentrationlimitsglucocorticoid-dependenten-hanceractivity.MolEndocrinol.1987;1:68–74.
22.LiddleGW.Analysisofcircadianrhythmsinhumanadrenocortical
secretoryactivity.ArchInternMed.1966;117:739–743.
23.QianX,DrosteSK,LightmanSL,ReulJM,LinthorstAC.Circa-dianandultradianrhythmsoffreeglucocorticoidhormonearehighlysynchronizedbetweentheblood,thesubcutaneoustissue,andthebrain.Endocrinology.2012;153:4346–4353.
24.VeldhuisJD,IranmaneshA,LizarraldeG,JohnsonML.Amplitude
endo.endojournals.org1003
modulationofaburstlikemodeofcortisolsecretionsubservesthecircadianglucocorticoidrhythm.AmJPhysiol.1989;257:E6–E14.
25.
SchmidW,StrahleU,SchutzG,SchmittJ,StunnenbergH.Glu-cocorticoidreceptorbindscooperativelytoadjacentrecognitionsites.EMBOJ.1989;8:2257–2263.
26.
SchenaM,FreedmanLP,YamamotoKR.Mutationsinthegluco-corticoidreceptorzincfingerregionthatdistinguishinterdigitatedDNAbindingandtranscriptionalenhancementactivities.GenesDev.1989;3:1590–1601.
27.
StrahleU,KlockG,SchutzG.ADNAsequenceof15basepairsissufficienttomediatebothglucocorticoidandprogesteroneinduc-tionofgeneexpression.ProcNatlAcadSciUSA.1987;84:7871–7875.
28.LefstinJA,YamamotoKR.AllostericeffectsofDNAontranscrip-tionalregulators.Nature.1998;392:885–888.
29.
MeijsingSH,PufallMA,SoAY,BatesDL,ChenL,YamamotoKR.DNAbindingsitesequencedirectsglucocorticoidreceptorstruc-tureandactivity.Science.2009;324:407–410.
30.
VossTC,SchiltzRL,SungMH,etal.Dynamicexchangeatreg-ulatoryelementsduringchromatinremodelingunderliesassistedloadingmechanism.Cell.2011;146:544–554.
31.
DeBosscherK,HaegemanG.2009Minireview:latestperspectivesonantiinflammatoryactionsofglucocorticoids.MolEndocrinol.200923(3):281–291
32.
McNallyJG,MullerWG,WalkerD,WolfordR,HagerGL.Theglucocorticoidreceptor:rapidexchangewithregulatorysitesinlivingcells.Science.2000;287:1262–1265.
33.
DostertA,HeinzelT.Negativeglucocorticoidreceptorresponseelementsandtheirroleinglucocorticoidaction.CurrPharmDes.2004;10:2807–2816.
34.
MorrisonN,EismanJ.Roleofthenegativeglucocorticoidregu-latoryelementinglucocorticoidrepressionofthehumanosteocal-cinpromoter.JBoneMinerRes.1993;8:969–975.
35.
SurjitM,GantiKP,MukherjiA,etal.Widespreadnegativere-sponseelementsmediatedirectrepressionbyagonist-ligandedglu-cocorticoidreceptor.Cell.2011;145:224–241.
36.
GarsideH,StevensA,FarrowS,etal.Glucocorticoidligandsspec-ifydifferentinteractionswithNF-BbyallostericeffectsontheglucocorticoidreceptorDNAbindingdomain.JBiolChem.2004;279:50050–50059.
37.
ScheinmanRI,GualbertoA,JewellCM,CidlowskiJA,BaldwinASJr.CharacterizationofmechanismsinvolvedintransrepressionofNF-Bbyactivatedglucocorticoidreceptors.MolCellBiol.1995;15:943–953.
38.KarinM.Newtwistsingeneregulationbyglucocorticoidreceptor:isDNAbindingdispensable?Cell.1998;93:487–490.
39.
KasselO,HerrlichP.Crosstalkbetweentheglucocorticoidrecep-torandothertranscriptionfactors:molecularaspects.MolCellEndocrinol.2007;275:13–29.
40.DeBosscherK.Selectiveglucocorticoidreceptormodulators.JSte-roidBiochemMolBiol.2010;120:96–104.
41.
NewtonR,HoldenNS,CatleyMC,etal.Repressionofinflam-matorygeneexpressioninhumanpulmonaryepithelialcellsbysmall-moleculeIBkinaseinhibitors.JPharmacolExpTher.2007;321:734–742.
42.
DeBosscherK,HaegemanG,ElewautD.Targetinginflammationusingselectiveglucocorticoidreceptormodulators.CurrOpinPharmacol.2010;10:497–504.
43.
DoggrellS.IsAL-438likelytohavefewersideeffectsthantheglucocorticoids?ExpertOpinInvestigDrugs.2003;12:1227–1229.
44.
MinerJN,ArdeckyB,BenbatoulK,etal.Antiinflammatoryglu-cocorticoidreceptorligandwithreducedsideeffectsexhibitsanalteredprotein-proteininteractionprofile.ProcNatlAcadSciUSA.2007;104:19244–19249.
45.
SchackeH,RehwinkelH,AsadullahK.Dissociatedglucocorticoid
1004VandevyveretalAnti-inflammatoryPotentialofGRDimersreceptorligands:compoundswithanimprovedtherapeuticindex.CurrOpinInvestigDrugs.2005;6:503–507.
46.
ScheinmanRI,CogswellPC,LofquistAK,BaldwinASJr.RoleoftranscriptionalactivationofIB␣inmediationofimmunosup-pressionbyglucocorticoids.Science.1995;270:283–286.
47.ClarkAR.Anti-inflammatoryfunctionsofglucocorticoid-inducedgenes.MolCellEndocrinol.2007;275:79–97.
48.
vanRaalteDH,OuwensDM,DiamantM.Novelinsightsintoglucocorticoid-mediateddiabetogeniceffects:towardsexpansionoftherapeuticoptions?Eurjclininvestig.2009;39:81–93.
49.
TuckermannJP,ReichardtHM,ArribasR,etal.TheDNAbind-ing-independentfunctionoftheglucocorticoidreceptormediatesrepressionofAP-1-dependentgenesinskin.JCellBiol.1999;147:1365–1370.
50.
HeckS,BenderK,KullmannM,GottlicherM,HerrlichP,CatoAC.IB␣-independentdownregulationofNF-Bactivitybyglu-cocorticoidreceptor.EmboJ.1997;16:4698–4707.
51.
HeckS,KullmannM,GastA,etal.AdistinctmodulatingdomaininglucocorticoidreceptormonomersintherepressionofactivityofthetranscriptionfactorAP-1.EMBOJ.1994;13:4087–4095.52.
OgawaS,LozachJ,BennerC,etal.Moleculardeterminantsofcrosstalkbetweennuclearreceptorsandtoll-likereceptors.Cell.2005;122:707–721.
53.
ReilyMM,PantojaC,HuX,ChinenovY,RogatskyI.TheGRIP1:IRF3interactionasatargetforglucocorticoidreceptor-mediatedimmunosuppression.EmboJ.2006;25:108–117.
54.
SmoakKA,CidlowskiJA.Mechanismsofglucocorticoidreceptorsignalingduringinflammation.MechAgeingDev.2004;125:697–706.
55.
GlassCK,SaijoK.NuclearreceptortransrepressionpathwaysthatregulateinflammationinmacrophagesandTcells.NatRevIm-munol.2010;10:365–376.
56.
BaschantU,FrappartL,RauchhausU,etal.Glucocorticoidther-apyofantigen-inducedarthritisdependsonthedimerizedgluco-corticoidreceptorinTcells.ProcNatlAcadSciUSA.2011;108:19317–19322.
57.
KleimanA,HubnerS,RodriguezParkitnaJM,etal.Glucocorti-coidreceptordimerizationisrequiredforsurvivalinsepticshockviasuppressionofinterleukin-1inmacrophages.FasebJ.2012;26:722–729.
58.
TuckermannJP,KleimanA,MorigglR,etal.Macrophagesandneutrophilsarethetargetsforimmunesuppressionbyglucocorti-coidsincontactallergy.JClinInvest.2007;117:1381–1390.59.
VandevyverS,DejagerL,VanBogaertT,etal.GlucocorticoidreceptordimerizationinducesMKP1toprotectagainstTNF-in-ducedinflammation.JClinInvest.2012;122:2130–2140.
60.
ReichardtHM,TuckermannJP,GottlicherM,etal.RepressionofinflammatoryresponsesintheabsenceofDNAbindingbytheglucocorticoidreceptor.EmboJ.2001;20:7168–7173.
61.
JewellCM,ScoltockAB,HamelBL,YudtMR,CidlowskiJA.Complexhumanglucocorticoidreceptordimmutationsdefineglu-cocorticoidinducedapoptoticresistanceinbonecells.MolEndo-crinol.2012;26:244–256.
62.
SavoryJG,PrefontaineGG,LamprechtC,etal.Glucocorticoidreceptorhomodimersandglucocorticoid-mineralocorticoidrecep-torheterodimersforminthecytoplasmthroughalternativedimerizationinterfaces.MolCellBiol.2001;21:781–793.
63.
BledsoeRK,MontanaVG,StanleyTB,etal.Crystalstructureoftheglucocorticoidreceptorligandbindingdomainrevealsanovelmodeofreceptordimerizationandcoactivatorrecognition.Cell.2002;110:93–105.
64.
ColeTJ,BlendyJA,MonaghanAP,etal.Targeteddisruptionoftheglucocorticoidreceptorgeneblocksadrenergicchromaffincellde-velopmentandseverelyretardslungmaturation.GenesDev.1995;9:1608–1621.
65.
OitzlMS,ReichardtHM,JoelsM,deKloetER.PointmutationinthemouseglucocorticoidreceptorpreventingDNAbindingim-
Endocrinology,March2013,154(3):993–1007
pairsspatialmemory.ProcNatlAcadSciUSA.2001;98:12790–12795.
66.
AsadaM,RauchA,ShimizuH,etal.DNAbinding-dependentglucocorticoidreceptoractivitypromotesadipogenesisviaKrup-pel-likefactor15geneexpression.LabInvest.2011;91:203–215.67.
BayoP,SanchisA,BravoA,etal.Glucocorticoidreceptorisre-quiredforskinbarriercompetence.Endocrinology.2008;149:1377–1388.
68.
EhrchenJ,SteinmullerL,BarczykK,etal.Glucocorticoidsinducedifferentiationofaspecificallyactivated,anti-inflammatorysub-typeofhumanmonocytes.Blood.2007;109:1265–1274.
69.
DickinsonRJ,KeyseSM.Diversephysiologicalfunctionsfordual-specificityMAPkinasephosphatases.JCellSci.2006;119:4607–4615.
70.
JeffreyKL,CampsM,RommelC,MackayCR.Targetingdual-specificityphosphatases:manipulatingMAPkinasesignallingandimmuneresponses.NatRevImmunol.2007;6:391–403.
71.
AlessiDR,SmytheC,KeyseSM.ThehumanCL100geneencodesaTyr/Thr-proteinphosphatasewhichpotentlyandspecificallyin-activatesMAPkinaseandsuppressesitsactivationbyoncogenicrasinXenopusoocyteextracts.Oncogene.1993;8:2015–2020.72.
SunH,CharlesCH,LauLF,TonksNK.MKP-1(3CH134),animmediateearlygeneproduct,isadualspecificityphosphatasethatdephosphorylatesMAPkinaseinvivo.Cell.1993;75:487–493.73.
FranklinCC,KraftAS.Conditionalexpressionofthemitogen-activatedproteinkinase(MAPK)phosphataseMKP-1preferen-tiallyinhibitsp38MAPKandstress-activatedproteinkinaseinU937cells.JBiolChem.1997;272:16917–16923.
74.
LiuY,GorospeM,YangC,HolbrookNJ.Roleofmitogen-acti-vatedproteinkinasephosphataseduringthecellularresponsetogenotoxicstress.Inhibitionofc-JunN-terminalkinaseactivityandAP-1-dependentgeneactivation.JBiolChem.1995;270:8377–8380.
75.
RaingeaudJ,GuptaS,RogersJS,etal.Pro-inflammatorycytokinesandenvironmentalstresscausep38mitogen-activatedproteinki-naseactivationbydualphosphorylationontyrosineandthreonine.JBiolChem.1995;270:7420–7426.
76.
HutterD,ChenP,BarnesJ,LiuY.Catalyticactivationofmitogen-activatedprotein(MAP)kinasephosphatase-1bybindingtop38MAPkinase:criticalroleofthep38C-terminaldomaininitsneg-ativeregulation.BiochemJ.2000;352Pt.1:155–163.
77.
ReddyTE,PauliF,SprouseRO,etal.Genomicdeterminationoftheglucocorticoidresponserevealsunexpectedmechanismsofgeneregulation.GenomeRes.2009;19:2163–2171.
78.
ShippLE,LeeJV,YuCY,etal.Transcriptionalregulationofhu-mandualspecificityproteinphosphatase1(DUSP1)genebyglu-cocorticoids.PLoSOne.2010;5:e13754.
79.
AbrahamSM,LawrenceT,KleimanA,etal.Antiinflammatoryeffectsofdexamethasonearepartlydependentoninductionofdualspecificityphosphatase1.JExpMed.2006;203:1883–1889.80.
BhattacharyyaS,BrownDE,BrewerJA,VogtSK,MugliaLJ.Mac-rophageglucocorticoidreceptorsregulateToll-likereceptor4-me-diatedinflammatoryresponsesbyselectiveinhibitionofp38MAPkinase.Blood.2007;109:4313–4319.
81.
WangX,NelinLD,KuhlmanJR,MengX,WeltySE,LiuY.TheroleofMAPkinasephosphatase-1intheprotectivemechanismofdexamethasoneagainstendotoxemia.LifeSci.2008;83:671–680.82.
CanteriniS,BoscoA,DeMatteisV,MangiaF,FiorenzaMT.THG-1pitmovestonucleusattheonsetofcerebellargranuleneu-ronsapoptosis.MolCellNeurosci.2009;40:249–257.
83.
D’AdamioF,ZolloO,MoracaR,etal.Anewdexamethasone-inducedgeneoftheleucinezipperfamilyprotectsTlymphocytesfromTCR/CD3-activatedcelldeath.Immunity.1997;7:803–812.84.
ShibanumaM,KurokiT,NoseK.Isolationofageneencodingaputativeleucinezipperstructurethatisinducedbytransforminggrowthfactor1andothergrowthfactors.JBiolChem.1992;267:10219–10224.
Endocrinology,March2013,154(3):993–100785.RauchA,SeitzS,BaschantU,etal.Glucocorticoidssuppressbone
formationbyattenuatingosteoblastdifferentiationviathemono-mericglucocorticoidreceptor.CellMetab.2010;11:517–531.86.AyroldiE,MiglioratiG,BruscoliS,etal.ModulationofT-cell
activationbytheglucocorticoid-inducedleucinezipperfactorviainhibitionofnuclearfactorB.Blood.2001;98:743–753.
87.AyroldiE,ZolloO,MacchiaruloA,DiMarcoB,MarchettiC,
RiccardiC.Glucocorticoid-inducedleucinezipperinhibitstheRaf-extracellularsignal-regulatedkinasepathwaybybindingtoRaf-1.MolCellBiol.2002;22:7929–7941.
88.KatzME,McCormickF.SignaltransductionfrommultipleRas
effectors.CurrOpinGenetDev.1997;7:75–79.
89.MalumbresM,BarbacidM.RASoncogenes:thefirst30years.Nat
RevImmunol.2003;3:459–465.
90.VojtekAB,DerCJ.IncreasingcomplexityoftheRassignaling
pathway.JBiolChem.1998;273:19925–19928.
91.MittelstadtPR,AshwellJD.InhibitionofAP-1bytheglucocorti-coid-inducibleproteinGILZ.JBiolChem.2001;276:29603–29610.
92.CannarileL,CuzzocreaS,SantucciL,etal.Glucocorticoid-in-ducedleucinezipperisprotectiveinTh1-mediatedmodelsofcoli-tis.Gastroenterology.2009;136:530–541.
93.BeaulieuE,NgoD,SantosL,etal.Glucocorticoid-inducedleucine
zipperisanendogenousantiinflammatorymediatorinarthritis.ArthritisRheum.2010;62:2651–2661.
94.SrinivasanM,JanardhanamS.Novelp65bindingglucocorticoid-inducedleucinezipperpeptidesuppressesexperimentalautoim-muneencephalomyelitis.JBiolChem.2011;286:44799–44810.95.EddlestonJ,HerschbachJ,Wagelie-SteffenAL,ChristiansenSC,
ZurawBL.Theanti-inflammatoryeffectofglucocorticoidsisme-diatedbyglucocorticoid-inducedleucinezipperinepithelialcells.JAllergyClinImmunol.2007;119:115–122.
96.MathurinP,DengQG,KeshavarzianA,ChoudharyS,Holmes
EW,TsukamotoH.Exacerbationofalcoholicliverinjurybyen-teralendotoxininrats.Hepatology.2000;32:1008–1017.
97.GerkeV,MossSE.Annexins:fromstructuretofunction.Physiol
Rev.2002;82:331–371.
98.KovacicRT,TizardR,CateRL,FreyAZ,WallnerBP.Correlation
ofgeneandproteinstructureofratandhumanlipocortinI.Bio-chemistry.1991;30:9015–9021.
99.BlackwellGJ,CarnuccioR,DiRosaM,FlowerRJ,ParenteL,
PersicoP.Macrocortin:apolypeptidecausingtheanti-phospho-lipaseeffectofglucocorticoids.Nature.1980;287:147–149.
100.LiuJ,MunozNM,MelitonAY,etal.2-Integrinadhesioncaused
byeotaxinbutnotIL-5isblockedbyPDE-4inhibitionand2-adrenoceptoractivationinhumaneosinophils.PulmPharmacolTher.2004;17:73–79.
101.PerrettiM,D’AcquistoF.AnnexinA1andglucocorticoidsasef-fectorsoftheresolutionofinflammation.NatRevImmunol.2009;9:62–70.
102.WangZM,ZhuSG,WuZW,LuY,FuHZ,QianRQ.Kirenol
upregulatesnuclearannexin-1whichinteractswithNF-Btoat-tenuatesynovialinflammationofcollagen-inducedarthritisinrats.JEthnopharmacol.2011;137:774–782.
103.ZhangZ,HuangL,ZhaoW,RigasB.Annexin1inducedbyanti-inflammatorydrugsbindstoNF-Bandinhibitsitsactivation:anticancereffectsinvitroandinvivo.CancerRes.2010;70:2379–2388.
104.D’AmicoM,DiFilippoC,LaM,etal.Lipocortin1reducesmyo-cardialischemia-reperfusioninjurybyaffectinglocalleukocytere-cruitment.FASEBJ.2000;14:1867–1869.
105.DamazoAS,SampaioAL,NakataCM,FlowerRJ,PerrettiM,
OlianiSM.EndogenousannexinA1counter-regulatesbleomycin-inducedlungfibrosis.BMCImmunol.2011;12:59.
106.VongL,FerrazJG,DuftonN,etal.Up-regulationofAnnexin-A1
andlipoxinA(4)inindividualswithulcerativecolitismaypromotemucosalhomeostasis.PLoSOne.2012;7:e39244.endo.endojournals.org1005
107.YangYH,MorandEF,GettingSJ,etal.Modulationofinflam-mationandresponsetodexamethasonebyAnnexin1inantigen-inducedarthritis.ArthritisRheum.2004;50:976–984.
108.BabbinBA,LaukoetterMG,NavaP,etal.AnnexinA1regulates
intestinalmucosalinjury,inflammation,andrepair.JImmunol.2008;181:5035–5044.
109.OlianiSM,CioccaGA,PimentelTA,DamazoAS,GibbsL,Perretti
M.Fluctuationofannexin-A1positivemastcellsinchronicgran-ulomatousinflammation.InflammRes.2008;57:450–456.
110.YangY,HutchinsonP,MorandEF.InhibitoryeffectofannexinI
onsynovialinflammationinratadjuvantarthritis.ArthritisRheum.1999;42:1538–1544.
111.MartinGR,PerrettiM,FlowerRJ,WallaceJL.Annexin-1mod-ulatesrepairofgastricmucosalinjury.AmJPhysiolEndocrinolMetab.2008;294:G764–G769.
112.OuyangN,ZhuC,ZhouD,etal.MC-12,anAnnexinA1-based
peptide,iseffectiveinthetreatmentofexperimentalcolitis.PLoSOne.2012;7:e41585.
113.TischnerD,ReichardtHM.Glucocorticoidsinthecontrolofneu-roinflammation.MolCellEndocrinol.2007;275:62–70.
114.RuzekMC,PearceBD,MillerAH,BironCA.Endogenousgluco-corticoidsprotectagainstcytokine-mediatedlethalityduringviralinfection.JImmunol.1999;162:3527–3533.
115.GalonJ,FranchimontD,HiroiN,etal.Geneprofilingreveals
unknownenhancingandsuppressiveactionsofglucocorticoidsonimmunecells.FasebJ.2002;16:61–71.
116.DiefenbacherM,SekulaS,HeilbockC,etal.RestrictiontoFos
familymembersofTrip6-dependentcoactivationandglucocorti-coidreceptor-dependenttrans-repressionofactivatorprotein-1.MolEndocrinol.2008;22:1767–1780.
117.ButtgereitF,ZhouH,KalakR,etal.Transgenicdisruptionof
glucocorticoidsignalinginmatureosteoblastsandosteocytesat-tenuatesK/BxNmouseserum-inducedarthritisinvivo.ArthritisRheum.2009;60:1998–2007.
118.HermosoMA,MatsuguchiT,SmoakK,CidlowskiJA.Glucocor-ticoidsandtumornecrosisfactor␣cooperativelyregulatetoll-likereceptor2geneexpression.MolCellBiol.2004;24:4743–4756.119.McMasterA,RayDW.Modellingtheglucocorticoidreceptorand
producingtherapeuticagentswithanti-inflammatoryeffectsbutreducedside-effects.ExpPhysiol.2007;92:299–309.
120.ReberLL,DaubeufF,PlantingaM,etal.Adissociatedglucocor-ticoidreceptormodulatorreducesairwayhyperresponsivenessandinflammationinamousemodelofasthma.JImmunol.2012;188:3478–3487.
121.RosenJ,MinerJN.Thesearchforsaferglucocorticoidreceptor
ligands.EndocrRev.2005;26:452–464.
122.KleimanA,TuckermannJP.Glucocorticoidreceptoractioninben-eficialandsideeffectsofsteroidtherapy:lessonsfromconditionalknockoutmice.MolCellEndocrinol.2007;275:98–108.
123.GroseR,WernerS,KesslerD,etal.Aroleforendogenousgluco-corticoidsinwoundrepair.EMBORep.2002;3:575–582.
124.ReichardtSD,FollerM,RexhepajR,etal.Glucocorticoidsen-hanceintestinalglucoseuptakeviathedimerizedglucocorticoidreceptorinenterocytes.Endocrinology.2012;153:1783–1794.125.ConawayHH,PirhayatiA,PerssonE,etal.Retinoidsstimulate
periostealboneresorptionbyenhancingtheproteinRANKL,aresponseinhibitedbymonomericglucocorticoidreceptor.JBiolChem.2011;286:31425–31436.
126.WaddellDS,BaehrLM,vandenBrandtJ,etal.Theglucocorticoid
receptorandFOXO1synergisticallyactivatetheskeletalmuscleatrophy-associatedMuRF1gene.AmJPhysiolEndocrinolMetab.2008;295:E785–E797.
127.DeBosscherK,VandenBergheW,BeckIM,etal.Afullydisso-ciatedcompoundofplantoriginforinflammatorygenerepression.ProcNatlAcadSciUSA.2005;102:15827–15832.
128.BosmannM,GrailerJJ,ZhuK,etal.Anti-inflammatoryeffectsof
1006VandevyveretalAnti-inflammatoryPotentialofGRDimers2adrenergicreceptoragonistsinexperimentalacutelunginjury.FasebJ.2012;26:2137–2144.
129.
BauvoisB,DauzonneD.Aminopeptidase-N/CD13(EC3.4.11.2)inhibitors:chemistry,biologicalevaluations,andtherapeuticpros-pects.MedicinalResRev.2006;26:88–130.
130.
CoonS,KekudaR,SahaP,SundaramU.Glucocorticoidsdiffer-entiallyregulateNa-bileacidcotransportinnormalandchroni-callyinflamedrabbitilealvilluscells.AmJPhysiolEndocrinolMetab.2010;298:G675–G682.
131.
DavieRJ,HosieKB,GroblerSP,Newbury-EcobRA,KeighleyMR,BirchNJ.IlealbileacidmalabsorptionincolonicCrohn’sdisease.BrJSurg.1994;81:289–290.
132.
JungD,FantinAC,ScheurerU,FriedM,Kullak-UblickGA.Hu-manilealbileacidtransportergeneASBT(SLC10A2)istransac-tivatedbytheglucocorticoidreceptor.Gut.2004;53:78–84.133.
CatoAC,GeisseS,WenzM,WestphalHM,BeatoM.Thenucle-otidesequencesrecognizedbytheglucocorticoidreceptorintherabbituteroglobingeneregionarelocatedfarupstreamfromtheinitiationoftranscription.EmboJ.1984;3:2771–2778.
134.
HagenG,WolfM,KatyalSL,SinghG,BeatoM,SuskeG.Tissue-specificexpression,hormonalregulationand5Ј-flankinggenere-gionoftheratClaracell10kDaprotein:comparisontorabbituteroglobin.NucleicAcidsRes.1990;18:2939–2946.
135.
JantzenK,FrittonHP,Igo-KemenesT,etal.PartialoverlappingofbindingsequencesforsteroidhormonereceptorsandDNaseIhy-persensitivesitesintherabbituteroglobingeneregion.NucleicAcidsRes.1987;15:4535–4552.
136.
LesurO,BernardA,ArsalaneK,etal.Claracellprotein(CC-16)inducesaphospholipaseA2-mediatedinhibitionoffibroblastmi-grationinvitro.AmJRespirCritCareMed.1995;152:290–297.137.
MahtaniKR,BrookM,DeanJL,SullyG,SaklatvalaJ,ClarkAR.Mitogen-activatedproteinkinasep38controlstheexpressionandposttranslationalmodificationoftristetraprolin,aregulatoroftu-mornecrosisfactor␣mRNAstability.MolCellBiol.2001;21:6461–6469.
138.
MukherjeeAB,KunduGC,MandalAK,PattabiramanN,YuanCJ,ZhangZ.Uteroglobin:physiologicalroleinnormalglomerularfunctionuncoveredbytargeteddisruptionoftheuteroglobingeneinmice.AmJKidneyDis.1998;32:1106–1120.
139.
MukherjeeAB,ZhangZ,ChiltonBS.Uteroglobin:asteroid-in-ducibleimmunomodulatoryproteinthatfoundedtheSecretoglo-binsuperfamily.EndocrRev.2007;28:707–725.
140.
HoggerP,ErpensteinU,RohdewaldP,SorgC.Biochemicalcharacterizationofaglucocorticoid-inducedmembraneprotein(RM3/1)inhumanmonocytesanditsapplicationasmodelsys-temforrankingglucocorticoidpotency.PharmRes.1998;15:296–302.
141.
KowalK,SilverR,SlawinskaE,BieleckiM,ChyczewskiL,Kowal-BieleckaO.CD163anditsroleininflammation.FoliaHistochemCytobiol.2011;49:365–374.
142.
SchaerDJ,BorettiFS,HongeggerA,etal.MolecularcloningandcharacterizationofthemouseCD163homologue,ahighlygluco-corticoid-induciblememberofthescavengerreceptorcysteine-richfamily.Immunogenetics.2001;53:170–177.
143.
SchaerDJ,BorettiFS,SchoedonG,SchaffnerA.InductionoftheCD163-dependenthaemoglobinuptakebymacrophagesasanovelanti-inflammatoryactionofglucocorticoids.BrJHaematol.2002;119:239–243.
144.
YoungJD,LawrenceAJ,MacLeanAG,etal.Thymosin4sul-foxideisananti-inflammatoryagentgeneratedbymonocytesinthepresenceofglucocorticoids.NatMed.1999;5:1424–1427.
145.
GrahamTE,KeyTA,KilpatrickK,DorinRI.Dexras1/AGS-1,asteroidhormone-inducedguanosinetriphosphate-bindingprotein,inhibits3Ј,5Ј-cyclicadenosinemonophosphate-stimulatedsecre-tioninAtT-20corticotrophcells.Endocrinology.2001;142:2631–2640.
146.
GrahamTE,ProssnitzER,DorinRI.Dexras1/AGS-1inhibitssig-
Endocrinology,March2013,154(3):993–1007
naltransductionfromtheGi-coupledformylpeptidereceptortoErk-1/2MAPkinases.JBiolChem.2002;277:10876–10882.147.
KemppainenRJ,BehrendEN.Dexamethasonerapidlyinducesanovelrassuperfamilymember-relatedgeneinAtT-20cells.JBiolChem.1998;273:3129–3131.
148.
NguyenCH,WattsVJ.Dexamethasone-inducedRasprotein1negativelyregulatesproteinkinaseCdelta:implicationsforad-enylylcyclase2signaling.MolPharmacol.2006;69:1763–1771.149.
HiragunT,PengZ,BeavenMA.Dexamethasoneup-regulatestheinhibitoryadaptorproteinDok-1andsuppressesdownstreamac-tivationofthemitogen-activatedproteinkinasepathwayinanti-gen-stimulatedRBL-2H3mastcells.MolPharmacol.2005;67:598–603.
150.
FontenotJD,GavinMA,RudenskyAY.Foxp3programsthede-velopmentandfunctionofCD4ϩCD25ϩregulatoryTcells.NatImmunol.2003;4:330–336.
151.
KaragiannidisC,AkdisM,HolopainenP,etal.GlucocorticoidsupregulateFOXP3expressionandregulatoryTcellsinasthma.JAllergyClinImmunol.2004;114:1425–1433.
152.
GayoA,MozoL,SuarezA,TunonA,LahozC,GutierrezC.Glu-cocorticoidsincreaseIL-10expressioninmultiplesclerosispatientswithacuterelapse.JNeuroimmunol.1998;85:122–130.
153.
VerhoefCM,vanRoonJA,VianenME,LafeberFP,BijlsmaJW.Theimmunesuppressiveeffectofdexamethasoneinrheumatoidarthritisisaccompaniedbyupregulationofinterleukin10andbydifferentialchangesininterferongammaandinterleukin4pro-duction.AnnRheumDis.1999;58:49–54.
154.
NeumannD,KolleweC,MartinMU,BoraschiD.ThemembraneformofthetypeIIIL-1receptoraccountsforinhibitoryfunction.JImmunol.2000;165:3350–3357.
155.
ReF,MuzioM,DeRossiM,etal.ThetypeII“receptor”asadecoytargetforinterleukin1inpolymorphonuclearleukocytes:charac-terizationofinductionbydexamethasoneandligandbindingprop-ertiesofthereleaseddecoyreceptor.JExpMed.1994;179:739–743.
156.
LevineSJ,BenfieldT,ShelhamerJH.Corticosteroidsinducein-tracellularinterleukin-1receptorantagonisttypeIexpressionbyahumanairwayepithelialcellline.AmJRespirCellMolBiol.1996;15:245–251.
157.
AuphanN,DiDonatoJA,RosetteC,HelmbergA,KarinM.Im-munosuppressionbyglucocorticoids:inhibitionofNF-BactivitythroughinductionofIBsynthesis.Science.1995;270:286–290.158.
DerooBJ,ArcherTK.GlucocorticoidreceptoractivationoftheIB␣promoterwithinchromatin.MolBiolCell.2001;12:3365–3374.
159.
DasH,KumarA,LinZ,etal.Kruppel-likefactor2(KLF2)reg-ulatesproinflammatoryactivationofmonocytes.ProcNatlAcadSciUSA.2006;103:6653–6658.
160.
ChiversJE,GongW,KingEM,etal.AnalysisofthedissociatedsteroidRU24858doesnotexcludearoleforinduciblegenesintheanti-inflammatoryactionsofglucocorticoids.MolPharmacol.2006;70:2084–2095.
161.
YaoXL,CowanMJ,GladwinMT,LawrenceMM,AngusCW,ShelhamerJH.Dexamethasonealtersarachidonatereleasefromhumanepithelialcellsbyinductionofp11proteinsynthesisandinhibitionofphospholipaseA2activity.JBiolChem.1999;274:17202–17208.
162.
ZhangL,LiH,HuX,LiXX,SmerinS,UrsanoR.Glucocorticoid-inducedp11over-expressionandchromatinremodeling:anovelmolecularmechanismoftraumaticstress?MedHypotheses.2011;76:774–777.
163.
SamuelssonMK,PazirandehA,DavaniB,OkretS.p57Kip2,aglucocorticoid-inducedinhibitorofcellcycleprogressioninHeLacells.MolEndocrinol.1999;13:1811–1822.
164.
HiragunT,PengZ,BeavenMA.Cuttingedge:dexamethasonenegativelyregulatesSykinmastcellsbyup-regulatingSRC-likeadaptorprotein.JImmunol.2006;177:2047–2050.
Endocrinology,March2013,154(3):993–1007165.Abbinante-NissenJM,SimpsonLG,LeikaufGD.Corticosteroids
increasesecretoryleukocyteproteaseinhibitortranscriptlevelsinairwayepithelialcells.AmJPhysiol.1995;268:L601–L606.
166.BrewerBY,MalickaJ,BlackshearPJ,WilsonGM.RNAsequence
elementsrequiredforhighaffinitybindingbythezincfingerdo-mainoftristetraprolin:conformationalchangescoupledtothebi-partitenatureofAu-richMRNA-destabilizingmotifs.JBiolChem.2004;279:27870–27877.
167.CarrickDM,LaiWS,BlackshearPJ.ThetandemCCCHzincfin-gerproteintristetraprolinanditsrelevancetocytokinemRNAturnoverandarthritis.ArthritisResTher.2004;6:248–264.
168.LaiWS,CarballoE,StrumJR,KenningtonEA,PhillipsRS,Black-shearPJ.EvidencethattristetraprolinbindstoAU-richelementsandpromotesthedeadenylationanddestabilizationoftumorne-crosisfactor␣mRNA.MolCellBiol.1999;19:4311–4323.
169.SmoakK,CidlowskiJA.Glucocorticoidsregulatetristetraprolin
synthesisandposttranscriptionallyregulatetumornecrosisfactor␣inflammatorysignaling.MolCellBiol.2006;26:9126–9135.170.WorthingtonMT,PeloJW,SachedinaMA,ApplegateJL,Arse-neauKO,PizarroTT.RNAbindingpropertiesoftheAU-richelement-bindingrecombinantNup475/TIS11/tristetraprolinpro-tein.JBiolChem.2002;277:48558–48564.
171.IshmaelFT,FangX,GaldieroMR,etal.RoleoftheRNA-binding
proteintristetraprolininglucocorticoid-mediatedgeneregulation.JImmunol.2008;180:8342–8353.
172.MaierJV,BremaS,TuckermannJ,etal.Dualspecificityphos-phatase1knockoutmiceshowenhancedsusceptibilitytoanaphy-laxisbutaresensitivetoglucocorticoids.MolEndocrinol.2007;21:2663–2671.
173.MattaR,BarnardJA,WancketLM,etal.KnockoutofMkp-1
exacerbatescolitisinIl-10-deficientmice.AmJPhysiolEndocrinolMetab.2012;302:G1322–G1335.
174.WuJJ,RothRJ,AndersonEJ,etal.MicelackingMAPkinase
phosphatase-1haveenhancedMAPkinaseactivityandresistancetodiet-inducedobesity.CellMetab.2006;4:61–73.
175.ZhangH,PodojilJR,LuoX,MillerSD.Intrinsicandinduced
regulationoftheage-associatedonsetofspontaneousexperimental
endo.endojournals.org1007
autoimmuneencephalomyelitis.JImmunol.2008;181:4638–4647.
176.
SalojinKV,OwusuIB,MillerchipKA,PotterM,PlattKA,OraveczT.EssentialroleofMAPKphosphatase-1inthenegativecontrolofinnateimmuneresponses.JImmunol.2006;176:1899–1907.177.SartoriR,LiF,KirkwoodKL.MAPkinasephosphatase-1protectsagainstinflammatoryboneloss.JDentRes.2009;88:1125–1130.178.
JinY,CalvertTJ,ChenB,etal.MicedeficientinMkp-1developmoreseverepulmonaryhypertensionandgreaterlungproteinlev-elsofarginaseinresponsetochronichypoxia.AmJPhysiolHeartCircPhysiol.2010;298:H1518–H1528.
179.
FrazierWJ,WangX,WancketLM,etal.Increasedinflammation,impairedbacterialclearance,andmetabolicdisruptionaftergram-negativesepsisinMkp-1-deficientmice.JImmunol.2009;183:7411–7419.
180.
WangX,MengX,KuhlmanJR,etal.KnockoutofMkp-1en-hancesthehostinflammatoryresponsestogram-positivebacteria.JImmunol.2007;178:5312–5320.
181.
KaiserRA,BuenoOF,LipsDJ,etal.Targetedinhibitionofp38mitogen-activatedproteinkinaseantagonizescardiacinjuryandcelldeathfollowingischemia-reperfusioninvivo.JBiolChem.2004;279:15524–15530.
182.
ChiH,BarrySP,RothRJ,etal.Dynamicregulationofpro-andanti-inflammatorycytokinesbyMAPKphosphatase1(MKP-1)ininnateimmuneresponses.ProcNatlAcadSciUSA.2006;103:2274–2279.
183.
HammerM,MagesJ,DietrichH,etal.Dualspecificityphos-phatase1(DUSP1)regulatesasubsetofLPS-inducedgenesandprotectsmicefromlethalendotoxinshock.JExpMed.2006;203:15–20.
184.
ZhaoQ,WangX,NelinLD,etal.MAPkinasephosphatase1controlsinnateimmuneresponsesandsuppressesendotoxicshock.JExpMed.2006;203:131–140.
185.
HammerM,EchtenachterB,WeighardtH,etal.Increasedinflam-mationandlethalityofDusp1-/-miceinpolymicrobialperitonitismodels.Immunology.2010;131:395–404.
186.
NimahM,ZhaoB,DenenbergAG,etal.ContributionofMKP-1regulationofp38toendotoxintolerance.Shock.2005;23:80–87.
因篇幅问题不能全部显示,请点此查看更多更全内容