您的当前位置:首页正文

New Insights

2024-09-02 来源:小奈知识网
MINIREVIEW

NewInsightsintotheAnti-inflammatoryMechanismsofGlucocorticoids:AnEmergingRolefor

Glucocorticoid-Receptor-MediatedTransactivation

SofieVandevyver,LienDejager,JanTuckermann,andClaudeLibert

DepartmentforMolecularBiomedicalResearch(S.V.,L.D.,C.L.),FlandersInstituteforBiotechnology,andDepartmentofBiomedicalMolecularBiology(S.V.,L.D.,C.L.),B9052Ghent,Belgium;andInstituteforGeneralZoologyandEndocrinology(J.T.),UniversityofUlm,D-89081Ulm,Germany

Glucocorticoidsareanti-inflammatorydrugsthatarewidelyusedforthetreatmentofnumerous(autoimmune)inflammatorydiseases.Theyexerttheiractionsbybindingtotheglucocorticoidreceptor(GR),amemberofthenuclearreceptorfamilyoftranscriptionfactors.Uponligandbinding,theGRtranslocatestothenucleus,whereitactseitherasahomodimerictranscriptionfactorthatbindsglucocorticoidresponseelements(GREs)inpromoterregionsofglucocorticoid(GC)-induciblegenes,orasamonomericproteinthatcooperateswithothertranscriptionfactorstoaffecttranscription.Fordecades,ithasgenerallybeenbelievedthattheundesirablesideeffectsofGCtherapyareinducedbydimer-mediatedtransactivation,whereasitsbeneficialanti-inflam-matoryeffectsaremainlyduetothemonomer-mediatedtransrepressiveactionsofGR.Therefore,currentresearchisfocusedonthedevelopmentofdissociatedcompoundsthatexertonlytheGRmonomer-dependentactions.However,manyrecentreportsunderminethisdogmabyclearlyshowingthatGRdimer-dependenttransactivationisessentialintheanti-inflammatoryactivitiesofGR.ManyofthesestudiesusedGRdim/dimmutantmice,whichshowreducedGRdimerizationandhencecannotcontrolinflammationinseveraldiseasemodels.Here,wereviewtheimportanceofGRdimersintheanti-inflammatoryactionsofGCs/GR,andhencewequestionthecentraldogma.WesummarizethecontributionofvariousGRdimer-inducibleanti-inflammatorygenesandques-tiontheuseofselectiveGRagonistsastherapeuticagents.(Endocrinology154:993–1007,2013)

lucocorticoids(GCs)arecriticalregulatorsofawidevarietyoffundamentalprocesses,includingmeta-bolichomeostasis,cellproliferation,inflammatoryandimmuneresponses,development,andreproduction(1–3).Atpharmacologicconcentrations,GCsdisplaypotentan-ti-inflammatoryeffects.Hence,numerousautoimmune,inflammatory,andallergicdisorders,suchasasthma,rheumatoidarthritis,ulcerativecolitis,andallergicrhini-tis(4,5),areoftentreatedwithsyntheticGCs,suchasdexamethasoneandprednisolone.Despitetheirexcellentanti-inflammatoryefficacy,theuseofGCsastherapeuticsisoftenrestrainedduetotwomajordrawbacks.First,long-termtreatmentwithGCsisoftenaccompaniedby

ISSNPrint0013-7227ISSNOnline1945-7170PrintedinU.S.A.

Copyright©2013byTheEndocrineSociety

doi:10.1210/en.2012-2045ReceivedOctober12,2012.AcceptedJanuary4,2013.FirstPublishedOnlineFebruary5,2013

G

severesideeffects,suchasdiabetes,osteoporosis,hyper-tension,andmuscleatrophy(6,7).Second,theoccurrenceofGCresistancealsolimitsthesuccessofmanyGC-basedtherapies.

GCsexerttheirfunctionsbybindingtotheirintracel-lularreceptor,theglucocorticoidreceptor(GR),whichisaligand-inducibletranscriptionfactorbelongingtothenuclearreceptorsuperfamily(8).TheGRisamodularproteincomposedofthreemajorfunctionaldomains:theN-terminaldomain,thecentralDNA-bindingdomain(DBD),andtheC-terminalligand-bindingdomain(LBD).TheDBDconsistsoftwozincfingersimportantforGRdimerization,nucleartranslocation,andDNAbinding.

Abbreviations:AIA,antigen-inducedarthritis;AP-1,activatorprotein1;CIA,collagen-inducedarthritis;COX2,cyclooxygenase2;DBD,DNA-bindingdomain;DNBS,dini-trobenzenesulfonicacid;GC,glucocorticoid;GILZ,GC-inducedleucinezipper;GR,glucocorticoidreceptor;GRE,GRresponseelement;JNK,c-junN-terminalkinase;LBD,ligand-bindingdomain;LPS,lipopolysaccharide;MR,mineralocorticoidreceptor;NF-␬B,nuclearfactor-␬B;nGRE,negativeGRE;SEGRAs,selectiveGRagonists;TA,transactivation;TR,transrepression.

Endocrinology,March2013,154(3):993–1007endo.endojournals.org993

994VandevyveretalAnti-inflammatoryPotentialofGRDimersEndocrinology,March2013,154(3):993–1007

adrenalglandinacircadianrhythmandundergopulsatilesecretion(22–24).

AlthoughinactiveGRisfoundprimarilyinthecytoplasm,itisnotrigidlycompartmentalized.GRshuttlescontinuouslybetweenthenucleusandthecytoplasmthroughthenuclearporechannel(reviewedinRef.15).Nevertheless,uponligandbinding,GRundergoesconformationalchangesandismainlyfoundinthenucleusduetoitsligand-inducednucleartranslocation.Inthenucleus,GRmediatestheup-regulationofnu-merousgenesanddown-regulationofothersinacoordinatedfashion.

Figure1.GeneralStructureoftheGRGR(human)iscomposedofanN-terminaldomain(NTD),

PositiveregulationisoftenmediatedaDBD,ahingeregion,andaC-terminalLBD.TheGRDBDcontainstwozincfingersinwhichthe

bythebindingofGRtoGR-bindingzincmoleculeislocatedbetweenfourcysteineresidues.InGRdim/dimmiceA458(red)ismutated

toathreonine.ThemutantGRcannotformdimers.sites.Thebest-describedmechanism

oftranscriptionalactivationisthedi-rectbindingofGRhomodimersto

Eachzincfingercontainsazincatombetweenfourcys-so-calledGRresponseelements(GREs)inthepromoter

teineresidues.Thesecondzincfingerismoreimportant

regionsofGC-induciblegenes(25).Infact,GRho-forGRdimerization.TheDBDandLBDarelinkedbya

modimerscanbindinthemajorgrooveofDNAviatheir

hingeregion,whichallowsnucleartranslocationofGR

DBD-containingtwozincfingersandthustargetaGRE

(9–11)(Figure1,upperpanel).Additionally,GCscanalso

(5,26).TheconsensusGREsequenceisaninvertedim-bindtoanothernuclearreceptor,themineralocorticoid

perfecthexamericpalindromeseparatedbyaspacerof3

receptor(MR),witha10-foldhigheraffinitythanwith

bp(5Ј-AGAACAnnnTGTTCT-3Ј,inwhich“n”isanynu-GR(12),butinterferenceofGCsinMRsignalingislimitedcleotide)(5,27).ThesequenceoftheGREvariesamongduetothetopicalrestrictionofMRexpression.Whereasdifferentpromoters,andthereforetheGREcanbecon-GRiswidelyexpressed,MRisexpressedonlyincertainsideredasasequence-specificallostericliganddirectingtypesofcells(andregulatessaltandwaterhomeostasis).thetranscriptionalactivityofGR(28,29).However,re-Furthermore,theactionofGCsthroughtheMRislimitedcentglobalChIP-SeqdatarevealthatGRbindstoDNAbytheactivityof11␤-hydroxysteroiddehydrogenase2inmostlyviatheGREconsensusmotif(30).Additionally,cellsinwhichMRisexpressed(13,14).nexttotransactivation(TA)of“simple”GREmotifsbyInitsinactivestate,GRresidespredominantlyintheGRdimers,GRcancooperatewithothertranscriptioncytoplasm,whereitissequesteredinamultimericchap-factorsasamonomericproteintoinducetranscriptioneronecomplexconsistingofheatshockproteins(suchas(31,32)toso-called“composite”elementsorbya“teth-hsp90,hsp70,hsp90bindingproteinp23),immunophi-ering”mechanism.BindingofGRtoDNAleadstore-lins(eg,FKBP51,FKBP52,Cyp44,andPP5),andothercruitmentofdistinctcofactorsthatenablechromatinre-factorstopreventitsdegradationandtoassistinitsmat-modeling,RNApolymeraseIIbinding,andsubsequenturation(15–17).TheGRisconstitutivelyexpressedingeneinduction.ThemechanismsofGR-mediatedtran-virtuallyallcelltypes,butthedifferenttissue-specificpat-scriptionalrepressionortransrepression(TR),ontheternsleadtotissue-specificoutcomesindifferentdiseasesotherhand,aremorepromiscuousandpartlyinvolve(18,19).Furthermore,GR-mediatedeffectsarereadilyDNAbindingofhomodimericGRtosimplenegativeinfluencedbyepigeneticregulators,context,andotherun-GREs(nGREs)orinvertedrepeats(IR)withlessthanthreerecognizeddeterminants(20,21).Inaddition,thekeyspacerstospecificallyrepressgenetranscription(33–35).variablesthatdeterminetheGR-mediatedoutcomein-Furthermore,GC-activatedmonomericGRcannega-cludetimingandgenomicaccessibilityofGC-responsivetivelyregulategenetranscription,eg,bytetheringothergenes.Thenatureandmagnitudeofacell’sresponsetotranscriptionfactors,suchasnuclearfactor-␬B(NF-␬B)GCsalsodependonthelevelsofhormonessecretedbytheandactivatorprotein1(AP-1),orthroughcross-talkwith

Endocrinology,March2013,154(3):993–1007endo.endojournals.org995

CurrentConceptoftheAnti-inflammatoryMechanismofGC/GR:EmphasisonTR

Untilrecently,itwasgenerallybe-lievedthatTRoftranscriptionfac-torsbymonomericGRisthemaindeterminantoftheanti-inflamma-torypropertiesofGR,whereasitssideeffectsresideinitsTApotential(36,38,39,46).Thisconcepthasbeenreviewedextensively(31,41,47).Briefly,itisknownthatTA,throughdirectDNAbinding,in-ducestheexpressionofseveralen-zymes(eg,phosphoenolpyruvatecarboxykinase,tyrosineaminotransfer-ase,andglucose6-phosphate)involvedinglucoseandlipidmetabolism.Hence,uncontrolledup-regulationofthesegenescouldaccountforthediabetogeniceffectsofGCs,which

Figure2.GRSignalingActivatedGRcanleadtoeitheractivationorrepressionofgeneresultinhyperglycemiaandde-transcription.Leftgreenpanel:TAismediatedby(i)bindingofGRdimerstoGRE,(ii)DNA

creasedcarbohydratetolerance(1,

bindingofGRinconcertwithanothertranscriptionfactor(TF:XY),or(iii)bindingofGRtoaTF

48).Ontheotherhand,itisbelievedbyatetheringmechanism.Rightredpanel:TRismainlyachievedby(iv)directbindingofGR

dimerstonGRE(simpleorIR),(v)DNA-bindingcross-talkwithanotherTF,(vi)interferenceofthattheanti-inflammatoryactionsmonomericGRwiththeTAactivityofTFsbyatetheringmechanism,(vii)competitionforanofGCtherapyarepredominantlyre-overlappingbindingsite(competitiveGRE),(viii)sequestrationofaDNA-boundTF,or(ix)

latedtotheTReffectsofGR(11,49)competitionforbindingcofactorswithotherDNA-boundTFs.

becausesomeinflammatorypro-cessescouldstillberestrictedinadim/dimothertranscriptionfactorsandbindingto“composite”mousestrain(GR)inwhichGRislargelydimeriza-elements(36,37).Foranoverviewofthefundamentaltiondefectiveduetoreplacementofanalaninebyathre-aspectsofGRtranscriptionalregulation,seeFigure2.onine(A458T)(11,50,51).Thismutationislocatedinthe

Theanti-inflammatoryeffectsofGRarebelievedtosecondzincfingerintheDBDofGR(Figure1,lowergenerallyresultfromtetheringprotein-proteininterac-panel)andcausesreducedbindingtoDNAand,moretionsbetweenGRandothertranscriptionfactors,partic-specifically,totheGRE(11,50,51).

TRofinflammatorytargetgenesmostofteninvolvesularlyNF-␬BandAP-1,whichresultsinTRofawide

varietyofproinflammatorygenes.Ontheotherhand,theinterferenceofGRwiththeactivityofDNA-boundpro-debilitatingGC-mediatedeffectsarethoughttobecausedinflammatorytranscriptionfactors,suchasNF-␬B,cAMP

responseelement-bindingprotein,interferonregulating

byTAofsimpleGREgenes(38,39).Accordingly,so-factor-3,nuclearfactorofactivatedTcells,signaltrans-calledselectiveGRagonists(SEGRAs)thatfavorTRwere

ducersandactivatorsoftranscription,Th1-specificTbox

developedastherapeuticagentswithreducedsideeffects.

transcriptionfactor,GATA3,andAP-1(52–54).Because

ExamplesareRU24858,compoundA,AL-438,LGD5552,

thesetranscriptionfactorsregulatetheexpressionofin-andZK216348(40–45).However,morerecentdataflammatorygenes,GR-mediatedtetheringofthesetran-showthattheTApotentialofGRisindispensableforitsscriptionfactorseventuallyleadstorepressionofalargeanti-inflammatoryproperties,atleastincertaindiseasenumberofproinflammatorymediators:cytokines(includ-settings.Here,weprovideanoverviewoftheanti-inflam-ingTNF,granulocytemacrophagecolonystimulatingfac-matorymechanismsofGR,focusingmainlyontheinduc-tor,IL-1␤,IL-2,IL-3,andIL-6),chemokines(eg,eotaxin,tionofanti-inflammatorygenesbyGRasahomodimericmacrophageinflammatoryprotein[MIP],andregulatedtranscriptionfactorandwithemphasisoninvivostudies.andnormalTcellexpressedandsecreted[RANTES]),en-

996VandevyveretalAnti-inflammatoryPotentialofGRDimerszymes(suchasinduciblenitricoxidesynthaseandcyclo-oxygenase2[COX2]),andadhesionmolecules(eg,inter-cellularadhesionmolecule1andvascularcelladhesionmolecule1).Thus,negativeregulationbytetheringhasbecomeaparadigmfortheanti-inflammatoryandim-mune-suppressiveactionsofGR.Themost-studiedcross-talkmechanismsarethosebetweenGRandNF-␬B,GRandAP-1,andGRandinterferonregulatingfactor-3(41,42,45,55).

StudiesonGRdim/dimMice:TheEmergingRoleofGRDimerizationintheAnti-inflammatoryFunctionofGR

Asmentionedabove,moststudiesclaimthatinteractionofmonomericGRwithproinflammatorytranscriptionfac-torsisthebasisofitsanti-inflammatoryactivity.How-ever,thecontributionofGRdimerstoitsanti-inflamma-torypropertyremainscontroversial.MountingevidenceindicatesthattheTApotentialofGRdimersisrequiredforexecutionofthecompleteanti-inflammatorycascade(49,56–59).MoststudiesinvolvedexperimentsinGRdim/dimmice.

Importantly,GRE-dependentgenetranscriptionisdi-minishedincellsoriginatingfromGRdim/dimmice,asshownbyimpairedinductionofamousemammarytumorvirus-CATreporterinGRdim/dimmouseembryofibroblastcellsandGR-induciblegluconeogenicenzymes,suchasg6pandpck1,inliverlysatesofGRdim/dimmiceandre-duced(butnotabsent)GCregulationofgenesintheliverasrevealedbygenome-wideexpressionprofiling(10,11).However,therepressingfunction(cross-talkwithAP-1andNF-␬B)ofGRisstillintactinGRdim/dimmice(11,49,51,60).

Almostallevidencediscussedinthisreviewisbasedontheanalysisofthesingle-pointmutantA458T,otherwiseknownastheGRdim/dimmutant.However,oneshouldconsiderthesedatawithcaution,becausemountingevi-denceindicatesthatadditionalresiduesareindispensableforGRdimerization.TheideathatGRdim/dimmutantscannotformdimershasbeenchallengedbyarecentstudy(61).Humanosteosarcoma(U-2OS)cellsexpressingtheGRwt/wtreceptororthehGRdim/dim(A458T)orhGRdim4(A458T,R460D,D462C,andN454D)mutantwereusedwithGRE-drivenreportersintransientreportergeneas-says.TheresultsrevealedthatthehGRdim4mutantisevenmoreunresponsivetosteroidsthanthehGRdim/dim(A458T)mutant.ThesefindingsareinagreementwiththeresistanceofhumancelllinescarryingthesemutationstoGC-mediatedapoptosis(61).ThesefindingsareinlinewithearlierpublisheddatashowingthatboththeGRdim/dimEndocrinology,March2013,154(3):993–1007

andGRdim4mutationsintheD-loopstronglyinhibitedGRdimerizationandGR-mediatedTAbutdidnothampertherepressionofAP-1andNF-␬B(51).Indeed,Jewelletal.(61)alsoshowedthattheTRcapacityofhGRdim/dimwasindeedunaffected.Whatisparticularlyinterestingisthatimmunoprecipitationexperimentsshowedthatboththehuman(h)GRdim/dimandhGRdim4receptorscouldpromptlyformdimers.Ofcourse,thesestrikingfindingsshouldbeexperimentallyconfirmedfurther.Further-more,Savoryetal.(62)havedemonstratedanoveldimerinterfaceintheLBDofGR.Mutatingthisdimerinterface’smostimportantresidues(P625andI628)toalaninesre-sultedina10-folddecreaseindimerizationaffinityrela-tivetowild-type(WT)LBD.Furthermore,byusingamousemammarytumorvirusreporterassay,Bledsoeetal.(63)showedthattheresiduesofthisdimerinterfacearealsoimportantfortheGRTAfunction,.Inaddition,morerecentgeneexpressionprofilingbyFrijters(10unambig-uouslyconfirmsthattheGRdim/dimmutantcanstilltrans-activatesomegenes,albeitnotasstronglyasitswildtypecounterpart.

Takentogether,alltheabove-mentionedfindingsindi-catethatthesingle-pointmutationintheDBD,namelyA458TintheGRdim/dimmutant,maynotbesufficienttocompletelyabolishdimerizationandthusGR-mediatedTA.Mostprobably,theGRdim/dimmutantcanstillbindtoasetofGR-responsivepromoters,althoughinacelltype-andgenepromoter-specificmanner,byformingmultim-ersindependentlyoftheDBD-dimerinterface.Neverthe-less,allstudiesperformedwiththeGRdim/dimmutantandsubsequentfindingsdoprovethatthissingle-pointmuta-tionreducesdimerization,andthattheGR-DNAbindingpotentialandTAarecriticallyimportantintheanti-in-flammatoryactionsofGR.

MicecarryingtheGRdim/dimmutation(11)areviable,incontrasttothefullGRknock-outmouse(64).GRdim/dimmicearenormalinsizeandappearnormal,buttheydoshowsomeanomalies,suchasincreasedexpressionofPomcinthepituitarygland,whichdemonstratesthelossofnegativecontrolofPomctranscriptionbyGRdimers.ThisresultsinelevatedlevelsofsecretedACTHandGCs(11,65).Additionally,studiesonGRdim/dimmicerevealedthatGRdimerizationisrequiredforGC-mediatedthy-mocyteapoptosisandlong-termproliferationoferythro-blasts(11).Anothercellularprocessthatnecessitatesac-tionofGRdimersisadipogenesis:thisprocesscouldbepromotedbyinductionofKrüppel-likefactor15byadimerizedGR(66).Furthermore,GRdimersarealsore-quiredforthetask-relatedfacilitatingeffectsofGCsonspatialmemory(65).Incontrast,dimerizationofGRisdispensableforepidermalandhairfollicledevelopmentduringembryogenesis(67).

Endocrinology,March2013,154(3):993–1007endo.endojournals.org997

Table1.

IdentificationoftheroleofGRdimersindifferentphysiologicalresponsestoGCsbyusingGRdim/dimmice

Effects

GRDimerizationRequiredRequiredRequiredDispensableRequiredRequiredDispensableDispensableRequiredRequiredRequiredDispensableRequiredRequired

ImportantCellTypesIL-17producingT-cellsMacrophagesNeutrophilsMacrophages

T-lymphocytesMacrophagesIntestinalepithelialcellsEnterocytes

OsteoblastsOsteoclastsUnknownUnknownFibroblastsThymocytesUnknownErythroblastsUnknown

References(56)(58)(57)(49,60)(59)(124)(85,125)(126)(123)(66)(11,61)(67)(11)(65)

Resolutionofinflammation

Antigen-andG6PI-inducedarthritisContacthypersensititivity

LPS-andCLP-inducedsepticshock

PMA-inducedirritativeskininflammationTNF-inducedinflammationSideeffects

HyperglycemiaOsteoporosis

SkeletalmuscleatrophyWoundrepairCellularprocessesAdipogenesisApoptosis

EpidermaldevelopmentduringembryogenesisProliferationSpatialmemory

CLP,cecalligationandpuncture;PMA,phorbolmyristateacetate.

ThecontributionoftheDNA-bindingfunctionofGRtotheanti-inflammatoryeffectsofGRwasuntilrecentlystronglyunderestimated.SeveralstudieshaveexploitedtheresponseofGRdim/dimmiceinseveralinflammatorydiseasemodels(Table1).IthasbeenshownthatDNA-bindingGRdimersarenotrequiredinGCtherapyofirritativeskininflammationinducedbyphorbolester(phorbolmyristateacetate),andthatGRmonomerscaninhibitinflammationinthismodel(49,60).Incontrast,GRdim/dimmicewererefractorytoGCtreatmentinamousemodelofcontacthypersensitivity,whichmimicsallergiccontactdermatitis(58).ThesedataindicatethatdimerizationofGRandsubsequentGRE-dependenttran-scriptionareindispensablefortherestrictionofcertainallergicinflammatorydisorders.Similartocontacthyper-sensitivity,Baschantetal.(56)showedthatGCsrequireGRdimeractivitytorestraininflammationintwomurinerheumatoidarthritismodels:antigen-inducedarthritis(AIA)andglucose-6-phosphateisomerase-inducedarthri-tis.GCtreatmentdidnotprotectGRdim/dimmice,indicat-ingthattheDNA-bindingcapacityofdimericGRisrequiredforGC-mediatedsuppressionofarthritisinflam-mation.Moreover,GRdim/dimmicearealsohighlysuscep-tibleinseveralsepticshockmodels,suchassepsisinducedbylipopolysaccharide(LPS)orcecalligationandpunc-ture,andinflammationinducedbyTNF(57,59).Thesestudiesprovideevidencethatinsepticshock,thethera-peuticactionsofendogenousandexogenousappliedGCsrequireGRdimerization.Takentogether,thesedataun-derminetheconceptthatGRmonomersareresponsibleformostoftheanti-inflammatorypotentialofGCsandclearlyshowthatGRdimer-dependentTAisessentialfortheanti-inflammatoryactivitiesofGR.

GRDimer-DependentTranscriptionalActions

GR-mediatedTAofanti-inflammatorygenes

GeneexpressionprofilingofliversofGRwt/wtandGRdim/dimmicetreatedwithprednisolonerevealedthatmanygenescouldnotbesignificantlyinducedinGRdim/dimmice,indicatingthattheirinductiondependsonGRdimers(10).Manyofthesegeneshavewell-knownanti-inflammatoryactionsand,hence,mightcontributetotheanti-inflammatorypropertiesofGR.Here,wewillfocusonafewprominentgenesandelaborateontheiranti-inflammatoryactions.AcompleteoverviewofallGC-inducibleanti-inflammatorygenesidentifiedsofarandtheireffectsontheproinflammatorycascadearedepictedinTable2andFigure3.

WhereasDusp1,Tsc22d3,andAnxa1areonlyjustafewGC-induciblegenesmediatingsomeoftheanti-in-flammatorycapacitiesofGR,microarrayprofilingdataindicatethatmanyothergenesarepositivelyregulatedbyGRandplayaputativeroleinthedisputeagainstinflam-mation(10,57,68).However,identificationofthesegenesandtheirfunctionalityisstillinitsinfancy,whichmeansthatthecomplexityoftheanti-inflammatoryna-tureofGRisstillfarfromfullyunderstood.

MAPKphosphatase1ordualspecificityphosphatase1(MKP-1orDusp1)

Dualspecificityphosphatase1(encodedbyDusp1)isoneofthemostpotentanti-inflammatoryGR-inducibleproteins.Itisamemberofthedual-specificityphospha-tases,whichinclude10members,andcatalyzesthede-phosphorylationandsubsequentinactivationofboth

998VandevyveretalAnti-inflammatoryPotentialofGRDimersEndocrinology,March2013,154(3):993–1007

Table2.

SymbolADORA3ADRB1ANPEP

ListofGC-InducedAnti-inflammatoryGenes

Description

AdenosineA3receptor␤2-Adrenergicreceptor1AminopeptidaseN

Anti-inflammatoryMechanism

References(68)(128)(129)(99–103)(130–132)(133–139)(68,140–143)(68)(144)

(145–148)(149)(59,71–75)(68)

(150,151)(68)

(68,152,153)(154,155)(156)

(46,50,157,158)(159)(68)(160)

(161,162)(163)(160)(160)(164)(165)(82–84,86–90)(137,

166–171)

Inhibitionofeosinophilchemotaxis

SuppressionofJNKsignaling,suppressionofcytokinesecretionCleavesantigenpeptidesboundtomajorhistocompatibilitycomplexclassIImoleculesofpresentingcells

ANXA1Annexin-1Inhibitionofphospholipase2(cPLA2),COX-2andNF-␬BASBT/SLC10a2Apicalsodium-dependentbileBileacidtransporter

acidtransporter

CC10Claracell10kDaInhibitionofphospholipase2(cPLA2);bindshydrophobic

ligands,eg,phospholipidsandprostaglandins;inhibits

chemotaxisandphagocytosisofneutrophilsandmonocytes

CD163HemoglobinscavengerClearanceofproinflammatoryhemoglobin-haptoglobin

receptorcomplexes

CD1dAntigen-presentingMHCI-mediatedimmunosuppression(stimulatesinhibitoryNK

glycoproteinandinvariantT-cells)

CYP1A2Thymosinand␤4sulfoxideInhibitsneutrophilchemotaxis

DEXRAS1/AGS-1RAS,dexamethasone-inducedInhibitsligand-dependentsignalingbytheGi-coupledFPRand

1subsequentlyERK-1/2activation;blocksPKCkinaseactivity

DOK-1Dockingprotein1Inhibitoryadaptorprotein(suppressesactivationofMAPK

cascade)

DUSP1/MKP-1Dualspecificityphosphatase1InhibitsMAPKs(JNK/p38/ERK)FCARReceptorforFcfragmentofInteractswithIgA-opsonizedtargets

IgA

FOXP3ForkheadboxP3SuppressionofTregcellsFPRFormylpeptidereceptorSuppressionofcytokinesecretionIL-10IL-10SuppressionofTregcells,inhibitsexpressionof

proinflammatorycytokines,inhibitsNF-␬Bactivation

IL-1r2IL-1receptortypeIIDecoyreceptorforIL-1receptorIL-1raIL-1receptorantagonistCompetitiveinhibitionofIL-1bbindingtoitsreceptorI␬B␣InhibitorofNF-␬BInhibitionofNF-␬BKLF2LILRB1MT1X

p11/S100A10p57Kip2PAI-1RGS-2SLAPSLPI

TSC22D3/GILZTTP

Kruppel-likefactor2

Leukocyteimmunoglobulin-likereceptor,subfamilyBmember1

Methallothionein1X

S100calciumbindingproteinA10

Cyclin-dependentkinaseinhibitor1C

Plasminogenactivatorinhibitor1

RegulatorofG-proteinsignaling2

Src-like-adaptorprotein

Secretoryleukocytepeptidaseinhibitor

TSC22domainfamily,member3Tristetraprolin

InhibitionofNF-␬BandAP-1

MHCI-mediatedimmunosuppressionFreeradicalscavenger

Inhibitionofphospholipase2(cPLA2)Cyclin-dependentkinaseinhibitorInhibitionofthefibrinolyticcascadeReducesGq-linkedsignaling

ReducesT-cellsignalingbyinteractingwithSyk/Zap70Inhibitorofserineproteases

InhibitionofNF-␬B,AP-1,Raf-1andRasDestabilizesmRNAandincreasesmRNAturnover

PKC,proteinkinaseC.

threonineandtyrosineresiduesinMAPKs,hencethenameMAPKphosphatases(MKPs)(69,70).Therearethreewell-definedMAPKsubfamilies:theERKs,c-JunN-terminalorstress-activatedproteinkinases(c-junN-terminalkinase[JNK]orstress-activatedproteinkinase),andp38MAPK.Thesekinasesplayanintricateroleinthehost-immuneresponseleadingtotheactivationofproin-flammatorytranscriptionfactors,suchasNF-␬BandAP-1,andensuingactivationofvariouscytokines,chemo-kines,andinflammatorymediators.MKP-1wasorigi-nallyidentifiedasaphosphatasespecificforERKMAPKs(71,72).However,consecutivestudieshaveshownthat

Endocrinology,March2013,154(3):993–1007endo.endojournals.org999

Figure3.AnOverviewofAllKnownGC-InducibleAnti-inflammatoryGenesandTheirEffectsontheProinflammatoryCascade.GRcanresolveinflammationby(i)hamperingtheactivationofproinflammatorysignalingpathwaysthroughinductionofIL-1receptorantagonist(IL-1ra),IL-1rtypeII(IL-1r2),secretoryleukocytepeptidaseinhibitor(Slpi),thymosin␤4sulfoxide,adenosineA3receptor(ADORA)andaminopeptidaseN(ANPEP);(ii)interferingwithsignalingcascadesthroughDok-1,SLAP,Dexras-1,RGS-2,Gilzandp57Kip2;(iii)inhibitionofsubsequentMAPKactivationviaGilz,MKP-1,p57Kip2andB2adrenoceptor;(iv)interactingofGilz,I␬B␣,Annexin-1,KLF2andIL-10withproinflammatory

transcriptionfactors;(v)inducingmRNAdestabilizationthroughTTP;(vi)inhibitingproteinfunctionviainductionofAnnexin-1,Cc10,IL-10,p11,p57Kip2,FPR,CD1d,LILRB1,Foxp3andMT1X;(vii)negativelyregulatingvariousprocessesthroughANPEP,PAI-1,Foxp3,B2adrenoceptor,Cc10,ASBT,LILRB1,FCARandCD163.

MKP-1hasapreferenceforJNKandp38MAPKs(73–75).TheinteractionofMKP-1withitssubstrates,theMAPKs,increasesitsactivityupto6-to8-fold(76).TheregulationofMkp1isofmuchinterestbutremainscontro-versial.Recently,ChIPsequencingrevealedaGREsiteinthepromoterregionofMkp1(77,78).Moreover,itwasshownthattheGC-mediatedinductionofMkp1isdependentonGRdimerizationwhencellsandtissuesareexposedtoGCsaloneorincombinationwithTNF(10,59),whereasMKP-1proteinissimilarlyinducedinGC-pretreatedcellsfollowedbyLPSinduction(79).Mkp1isexpressedinresponsetoGCsinawidevarietyoftissues,butitcanalsobeinducedbyseveralproinflammatorystimuli,suggestingthatMKP-1functionsasanegativefeedbackregulatorofMAPKsignal-ingandisconsequentlycriticalfortheresolutionofinflam-mation.MKP-1wasalsosuggestedtomediatetheprotectiveroleofendogenousGCsbyinterferingwithp38signalingduringLPS-inducedsepticshock(80).Knowledgeoftheim-portanceofMKP-1inthecombatagainstinflammationwasgainedfromstudiesonMkp1Ϫ/Ϫmice(foranoverviewofthe

useofMkp1Ϫ/ϪmiceinproinflammatorydiseasemodelsseeTable3).Additionally,anincreasingnumberofinvivostud-iesmakinguseofMkp1Ϫ/ϪmicedemonstratethatMKP-1contributestotheanti-inflammatoryresponsesofGCs.Forexample,GCscanprotectMkp1Ϫ/Ϫmiceonlypartlyagainstendotoxicshock(81)andTNF-inducedinflammatoryshock(59).Mechanistically,MKP-1protectsagainstTNF-inducedlethalshockbydephosphorylatingJNK,morespecificallyJNK-2(59).Furthermore,itwasshownthatdimerizationofGRisessentialforprotectionagainstacuteTNF-mediatedinflammationandcriticalforMkp1inductionandhencecontrolsactivationoftheproapoptoticJNK-2.Inthisrespect,thisstudywasthefirsttoprovethatGRdimerizationisalsoimportantintheregulationofTNF-inducedapoptosis(59).

ThesefindingstogethershowunambiguouslythatMKP-1hasapivotalroleasanegativefeedbackregu-latoroftheMAPK-signalingcascadeandhenceisim-portantinproinflammatorycytokineproductionandinnateimmunity.

1000VandevyveretalAnti-inflammatoryPotentialofGRDimersEndocrinology,March2013,154(3):993–1007

Table3.

UseofMkp1Ϫ/ϪMiceinSeveralDiseaseModels

Anti-inflammatory

MechanismInhibitionofp38InhibitionofMAPKInhibitionofJNKDeficiencyinCD4ϩTcellsroleforJNK?Inhibitionofp38Inhibitionofp38Inhibitionofp38Inhibitionofp38andJNKInhibitionofp38andJNK

Outcome

Enhancedmastcelldegranulation;increasedhypothermia

Severecolitis,mucosalhyperplasiaResistantResistant

Increasedcytokinelevels;increasedjoint-swelling;inflammationinankleandwristjoints

Inflammatoryboneloss

LowerlevelsofeNOSandlowerNO

production;increasedlevelsofarginaseI/IIImpairedbacterialclearance;increasedcytokinelevels;infiltrationofneutrophilsinlungs;increasedmortality

Increasedcytokineandchemokinelevels;greaterNOproduction;neutrophil

infiltration;severeorgandamage;highermortality

Increasedweightloss;impairedviralclearance

Greaterinfarctinjury

Increasedcytokinelevels;hypotension;respiratoryfailure;increasedNO

production;MOF;increasedmortalityIncreasedcytokineandchemokinelevels;increasedlethality

Increasedcytokineandchemokinelevels;enhancedintestinaldamage;increasedmortality;celldeath

NoresponsetoDexintermsofleukocyteinfiltrationandcytokinesuppression

References(172)(173))(174)(175)(176)(177)(178)(179)(180)

InflammatoryDiseaseModelAnaphylaxis

Colitis

Diet-inducedobesity

Experimentalautoimmuneencephalomyelitis(EAE)

Experimentalinductionofarthritis(EIA)Experimentalperiodontitis

Hypoxia3pulmonaryhypertensionInfectionwithgram-negativebacteria3sepsisInfectionwithgram-positivebacteria

Influenzaviralinfection

Ischemia-reperfusioninjury

LPS-inducedendotoxemiaandsepticshockPolymicrobialperitonitis(CaspandCLP)Stress

TNF-inducedacuteinflammationZymosan-inducedinflammation

DefectiveCD4ϩ/CD8ϩTcellresponsesϾroleforJNK?

Inhibitionofp38

Inhibitionofp38andJNKNomechanismdescribedInhibitionofp38andJNKInhibitionofJNK-2Inhibitionofp38andJNK

(175)(181)(81,176,182–184)(185)(184,186)(59)(79)

CLP,cecalligationandpuncture;Dex,dexamethasone;eNOS,endothelialNOS;MOF,multipleorganfailure.

GC-inducedleucinezipper(GILZ)

Tsc22d3(encodingGC-inducedleucinezipperorGILZ)isconsideredaprototypeofaGC-inducedgeneandisthereforeoftenrepresentedasamerereadoutproductoftheGC-inducedsignalingcascade.However,italsome-diatestheeffectsofGCsinimmunefunction.GILZbe-longstothefamilyofTGF-␤-stimulatedclone22domain(TSC22D)proteins.Thisfamilyincludesgenestranscrip-tionallyactivatedbyTGF-␤andGCsinawidevarietyofcelllinesandtissues(82–84).Tsc22d3inductionbyGCsisinhibitedinGRdim/dimmice(Ref.85;ourunpublishedresults).Moreover,theTsc22d3promoterregiondis-playssixputativeGREmotifs,aswellasmotifsforothertranscriptionfactors.TheGILZproteinhasbeenreportedtobindtoRasandRaf-1andthedownstreamproinflammatorytranscriptionfactorsNF-␬BandAP-1(86,87).Rasisamembrane-associatedproteinactivat-inganumberofsignalingcascades,includingtheRAF-MEK-ERKandphosphatidylinositol-3kinase-AKTpath-ways(88–90).Furthermore,bybindingtoRaf-1,GILZinhibitsMEKandERKphosphorylationandsubsequentactivation.Inthisway,GILZinductionseemstobeoneofthemechanismsbywhichGCsregulatetheMAPK-sig-nalingcascade,albeitindirectly.Next,GILZhasalsobeenshowntointeractwithp65(subunitofNF-␬B)andbothc-Fosandc-Jun(subunitsofAP-1)(86,91).Theseanti-inflammatorypropertiesofGILZindicateanimmunemodulatoryrole.Theanti-inflammatoryactionsofGILZhavebeenconfirmedbyusingmousemodelsofchronicinflammatorydiseases,suchasdinitrobenzenesulfonicacid(DNBS)-inducedcolitis(amodelofinflammatoryboweldisease)(92),collagen-inducedarthritis(CIA)(amurinemodelofRA)(93),andexperimentalautoimmuneencephalomyelitis(amodelofmultiplesclerosis[(MS])(94).TheuseofGILZ-overexpressingtransgenicmicedemonstratedthatGILZcanantagonizethedevelopment

Endocrinology,March2013,154(3):993–1007ofcolonicinflammationinducedbyDNBS(92).Inaddi-tion,invivodeliveryofTsc22d3smallinterferingRNAinCIAmiceincreaseddiseaseseverity,indicatingthatGILZhasanimportantprotectivefunction(93).Moreover,invitro,GILZsmallinterferingRNAinhibitedthesuppres-sionofLPS-inducedcytokinesbyGCs(95).Furthermore,GILZadministrationhadamoreprotectiveeffectthantheadministrationofhighdosesofGCsinbothDNBS-in-ducedcolitisandCIA.Inaddition,theanti-inflammatoryactionsofGCs(up-regulationofGILZuponGCtreat-menthasalsoproveneffective)inpatientssufferingfromalcoholichepatitis(AH)aredependentonGilz(96).Insummary,thesedatashowthatGILZisakeymediatoroftheanti-inflammatorypropertiesofGCs.

Annexin-1

Annexin-1orlipocortin-1(encodedbyAnxA1)isamemberoftheannexinsuperfamilyofcalcium-andphos-pholipid-bindingproteins(97).ThehumanAnxA1pro-moterregioncontainsaGREelement,butwhetheritcanbeinducedinGRdim/dimmicehasnotbeenreported(98).Annexin-1wasoriginallydescribedasaGC-inducedpro-teininhibitingtheactivityofphospholipaseA2,whichisknowntocleavearachidonyl-containingphosphatidesinthecell(99,100).Arachidonicacidcanbefurthermodi-fiedbycyclooxygenases(COX)toyieldtheproinflamma-torymediatorsprostaglandinsandleukotrienes.An-nexin-1alsoinhibitsNF-␬B,bybindingtothep65subunitandtherebypreventsitsbindingtoDNAandtoCOX-2(101–103).Neutralizingantibodiesagainstannexin-1ab-rogatedtheinhibitoryactionofGCsintherathindpawcarrageenanedemamodelandinaratischemia-reperfu-sioninjurymodel(104).StudiesonAnxA-1Ϫ/Ϫmiceshowedthatannexin-1isprotectiveinAIA,bleomycin-inducedlungfibrosis,anddextransodiumsulfate-in-ducedcolitis:thediseasesweremoresevereinAnxA-1Ϫ/Ϫmice(105–107).Ithasalsobeensuggestedthatannexin-1isprotectiveinCIA,ulcerativecolitis,andchronicgran-ulomatousinflammation(102,108,109).Moreover,GCsexertednoinhibitoryeffectsinAnxa-1Ϫ/Ϫmiceinacar-rageenan-orzymosan-inducedinflammatorymodelorinAIA,suggestingthatannexin-1mediatesanti-inflamma-toryactionsofGCs(107,110).Annexin-1wasalsoshowntomodulatetherepairofgastricmucosalinjury,becausetreatmentwithanannexin-1mimeticsignificantlyen-hancedgastriculcerhealing(111)andtheuseofanan-nexin-1-basedpeptide,MC-12,resultedinameliorationofsymptomsinbothdextransodiumsulfateand2,4,6-trinitrobenzenesulfonicacid-inducedcolitismodelsinmice(112).Insummary,thesefindingsraiseinterestinannexin-1asaGC-inducibleeffectorofinflammationresolution.

endo.endojournals.org1001

GR-mediatedTRofnGREgenes

Figure2explainshowGRdimersarealsorequiredforTRofnGREgenes(33,34).Theseso-callednGREele-ments,comparabletonormalGRE,arecomposedoftwoinvertedrepeats(hexanucleotides)thatareeitheradjacentorseparatedbyoneor2bp(CTCC(n)0–2GGAGA;re-ferredtoasIR0,IR1andIR2,respectively)(35).However,theanti-inflammatorycapacityofGR-mediatedTRofnGREgenesisunknown.Nevertheless,arecentstudybySurjitetal.(35)indicatedthatTRofnGREgenesbyGRdimerscantranscriptionallyrepresstheexpressionofthecytokinethymicstromallymphopoietinthroughdirectbindingofdimericGRtoanGRE.ThismechanismcouldaccountfortheGR-mediatedrestrictionofatopicderma-titis.ThesefindingssuggestthatthesensitivityofGRdim/dimmiceinseveraldiseasemodelscanalsobeaccountedforbyreducedTRofnGREgenes.ItwasreportedthatnGREsarepresentinmorethan1000mouse/humanorthologgenes,someofwhichareknowntoencodeproinflamma-torymediators,whichindicatestheimportanceofthismechanismasanadditionallevelofanti-inflammatoryGRsignaling(35).ThecontributionofnGREgenestotheanti-inflammatorycascadeofGRremainstobeeluci-dated,butneverthelessposesaninterestingfieldofinves-tigation.Thoroughinvestigation,forexamplebystudyingtheexpressionprofilesofthesegenesinGRdim/dimmice,couldleadtotheidentificationofnewanti-inflammatoryGRtargets.

GC-mediatedproinflammatoryeffects

Theabove-mentionedstudiesdemonstratethestronganti-inflammatoryactionsofGCs.However,GCsarenotexclusivelyimmunosuppressive(113);GCsalsoassistinmaintainingandevenfacilitatingimmunity.Forexample,adrenalectomizedmiceandpatientswithAddison’sdis-easeproducenoGCs,andbothofthesearemoresuscep-tibletoinfection(114).Indeed,ithasbeenreportedthatGCscanhaveenhancingeffectsonimmunecells(115).Forexample,ithasbeenreportedthatdependingonthecom-positionoftheGR-AP-1dimer,GRcaninfluencetheac-tivityAP-1eitherpositivelyornegatively(116).Also,dis-ruptionofGCactioninosteoblastsresultedinamorerapidresolutionofinflammationintheK/BxNmodelofexperimentalarthritis,suggestingthatGCshaveaproin-flammatoryroleinthismodel(117).Moreover,inaddi-tiontotheirimmunosuppressiveeffectonTLRsignaling,GCsalsoaffectTLRexpression.Forinstance,thepro-moterofTLR2iscooperativelystimulatedbyGCsandTNF,throughthepresenceofafunctionalNF-␬Bsite,aGREelement,andasignaltransducersandactivatorsoftranscription-bindingelement(118).Generally,GCsareimmunestimulatorywithinthenormalphysiologicrange

1002VandevyveretalAnti-inflammatoryPotentialofGRDimersofhypothalamic-pituitary-adrenalaxisactivityandinhib-itorywhenGClevelsarehigher,asinchronicallystressedanimals.ThesefindingsclearlyindicatetheeffectsofGCsarecriticallydosedependent:supraphysiologicdosesofGCsmostprobablyresultinthewidelyGC-mediatedanti-inflammatoryeffects,whereaslowerdosescanbeimmunomodulatory.

ConclusionandFuturePerspectives

InthisreviewweemphasizetheimportanceofGRdimerizationinthecombatagainst,orresolutionof,in-flammation.Itisgenerallybelievedthattheanti-inflam-matoryaspectofGRresultsfromTRofproinflammatorygenesbythetetheringofmonomericGRtoothertran-scriptionfactors.However,somerecentstudiesusingGRdim/dimmutantmiceindicatethatGRdimersalsoac-countfortheresolutionofinflammationbyGR.Thephys-iologyofGR,ie,itsisoforms,posttranslationalmodifica-tions,therecruitmentofcofactors,anditssubsequentactionsarestronglytissuespecific.Moreover,thereissub-stantialtemporalvariationinGC-mediatedactions,andthisisreflectedintime-dependentgene-specificinduction.ThismightexplainthediscordantreportsontheresponseofGRdim/dimmiceindistinctinflammatoryenvironments(Table1).Itisworthwhiletodecipherthetissue-andtime-specificeffectsofGCsbecauseitcouldresolvethecon-tradictionsinthereportedresultsandclarifytheroleofGRactionsinseveraldiseases.

Interestingly,thecontinuingidentificationofnewGRE-dependentgeneswithanti-inflammatorypropertiesdemonstratesthattheTApotentialofGRisindispensableandindicatesthatthemechanismoftheanti-inflamma-toryactionofGRisfarfromcompletelyunderstood,in-cludingtheunidentifiedroleofnGRE-dependentgenes.In-depthknowledgeofthesemechanismswillelucidatewhetherGRdimerizationpreventingGRligandsare,infact,potentialtherapeuticsinthecombatagainstinflam-mationormightbedangerousratherthanhelpfulinthisaspect.Indeed,manyscientistshavetriedtodevelopSEGRAsthatpreferentiallyinducetheformationofmonomers(33,35,42,119–121).However,onlytwocompoundshavemadeittoclinicaltrialsfortopicalap-plication.Thisisprobablyduetothefactthatanincreas-ingamountofdataisbeingpublishedontheimportanceofGRdimersintheresolutionofinflammation.Further-more,theabove-mentioneddogmaischallengedbydatashowingthatGRdim/dimmicestillsufferfromsomesideeffectsuponGCtreatment(122),whichmeansthatnotallsideeffectscanbeexplainedbyreducedGRTAactivity.AlthoughitwasdemonstratedthatGRdimersplayan

Endocrinology,March2013,154(3):993–1007

intricateroleinthedevelopmentofhyperglycemiaandwoundrepair(123,124),GCtherapyinGRdim/dimmicestillreducesboneformationandattenuatesosteoblastdif-ferentiation,bothofwhicharecharacteristicsofGC-in-ducedosteoporosis(85,123–125).Next,GRdim/dimmiceandGRwt/wtmiceshowthesamedegreeofmuscleatrophyuponGCtherapy,suggestingthatmonomericGRissuf-ficienttocauseskeletalmuscleatrophy(126).ThiscouldbebecausenotallgenesthatarepositivelyregulatedbyGRareaffectedbytheGRdim/dimmutation,suchasgenesde-pendentoncompositeelementsortetheringmechanisms(Figure2).Itmustbenotedthatitisdifficulttodifferen-tiatebetweenTAandTRbecausetheGRcoactivatorGR-interactingprotein1isalsorecruitedtositesofGRre-pression,indicatingthatitalsohasacorepressorfunction(20).ThesefindingsindicatethatGR-interactingprotein1hasadualfunction:facilitatingbothTAandTRaspectsofGRactiondependingonthegenomiccontext.Thisin-dicatesthatdissociatingcompoundswilllikelystillinducecertainunwantedsideeffects.Inaddition,SEGRAsmightnotactivateallthemechanismsofTRactions.Forexam-ple,compoundAeffectivelyblocksNF-␬B,butnotAP-1(Ref.127andourunpublisheddata).Moreover,anemergingroleforGR-dimer-mediatedTRofnGREgenesalsoquestionstheuseofSEGRAs.Sofar,themolecularmechanismsofGR-inducedrestrictionofinflammationarenotcompletelyunderstoodandposeaninterestingfieldofinvestigation.In-depthknowledgeofthesemech-anismswillelucidatewhetherGRligandsorSEGRAsarepotentialtherapeuticsforinflammation,orwhethertheycouldbedangerousbecausetheymightcauseimmunos-timulationincertaininflammatorydiseases.Here,wewanttostressthatthoroughstudiesareneededtounravelthemechanisticdetailsoftheanti-inflammatorycascadeofGR,inaninflammation-specificway.Hence,theiden-tificationandfurtheruseofSEGRAsobviouslyholdabraketothefullcascade.Theidentificationofdisease-specificGRagonistswillbenecessarytoreducepatientsufferinganddecreaseeconomiccosts.

Acknowledgments

Addressallcorrespondenceandrequestsforreprintsto:ClaudeLibert,VIB-DepartmentforMolecularBiomedicalResearch/Ugent,Technologiepark927,Zwijnaarde9052,Belgium.E-mail:Claude.libert@dmbr.vib-ugent.be.

DisclosureSummary:Theauthorshavenothingtodisclose.

References

1.BeatoM,KlugJ.Steroidhormonereceptors:anupdate.HumRe-prodUpdate.2000;6:225–236.

Endocrinology,March2013,154(3):993–10072.BoumpasDT,ChrousosGP,WilderRL,CuppsTR,BalowJE.Glucocorticoidtherapyforimmune-mediateddiseases:basicandclinicalcorrelates.AnnInternMed.1993;119:1198–1208.

3.SchmidW,ColeTJ,BlendyJA,SchutzG.Moleculargeneticanal-ysisofglucocorticoidsignallingindevelopment.JSteroidBiochemMolBiol.1995;53:33–35.

4.PrigentH,MaximeV,AnnaneD.Clinicalreview:corticotherapyinsepsis.CritCare.2004;8:122–129.

5.RhenT,CidlowskiJA.Antiinflammatoryactionofglucocortico-ids–newmechanismsforolddrugs.NEnglJMed.2005;353:1711–1723.

6.McDonoughAK,CurtisJR,SaagKG.Theepidemiologyofglu-cocorticoid-associatedadverseevents.CurrOpinRheumatol.2008;20:131–137.

7.SchackeH,DockeWD,AsadullahK.Mechanismsinvolvedinthesideeffectsofglucocorticoids.PharmacolTher.2002;96:23–43.8.WhitfieldGK,JurutkaPW,HausslerCA,HausslerMR.Steroidhormonereceptors:evolution,ligands,andmolecularbasisofbi-ologicfunction.JCellBiochem.1999;Suppl32–33:110–122.9.BeckIM,VandenBergheW,GerloS,etal.Glucocorticoidsandmitogen-andstress-activatedproteinkinase1inhibitors:possiblepartnersinthecombatagainstinflammation.BiochemPharmacol.2009;77:1194–1205.

10.FrijtersR,FleurenW,ToonenEJ,etal.Prednisolone-induceddif-ferentialgeneexpressioninmouselivercarryingwildtypeoradimerization-defectiveglucocorticoidreceptor.BMCGenomics.2010;11:359.

11.ReichardtHM,KaestnerKH,TuckermannJG,etal.DNAbinding

oftheglucocorticoidreceptorisnotessentialforsurvival.Cell.1998;93:531–541.

12.DeKloetER,DerijkR.Signalingpathwaysinbraininvolvedin

predispositionandpathogenesisofstress-relateddisease:geneticandkineticfactorsaffectingtheMR/GRbalance.AnnNYAcadSci.2004;1032:14–34.

13.FiebelerA,MullerDN,ShagdarsurenE,LuftFC.Aldosterone,

mineralocorticoidreceptors,andvascularinflammation.CurrOpinNephrolandHypertens.2007;16:134–142.

14.FunderJW.Mineralocorticoid-receptorblockade,hypertension

andheartfailure.NatureClinPractEndocrinolMetab.2005;1:4–5.

15.VandevyverS,DejagerL,LibertC.Onthetrailoftheglucocorti-coidreceptor:intothenucleusandback.Traffic.2012;13:364–374.

16.CheungJ,SmithDF.Molecularchaperoneinteractionswithste-roidreceptors:anupdate.MolEndocrinol.2000;14:939–946.17.PrattWB,ToftDO.Steroidreceptorinteractionswithheatshock

proteinandimmunophilinchaperones.EndocrRev.1997;18:306–360.

18.BaschantU,LaneNE,TuckermannJ.Themultiplefacetsofglu-cocorticoidactioninrheumatoidarthritis.NatrevRheumatol.2012;8:645–655.

19.ZhouJ,CidlowskiJA.Thehumanglucocorticoidreceptor:one

gene,multipleproteinsanddiverseresponses.Steroids.2005;70:407–417.

20.UhlenhautNH,BarishGD,YuRT,etal.2012Insightsintoneg-ativeregulationbytheglucocorticoidreceptorfromgenome-wideprofilingofinflammatorycistromes.Molcell

21.VanderbiltJN,MiesfeldR,MalerBA,YamamotoKR.Intracellu-larreceptorconcentrationlimitsglucocorticoid-dependenten-hanceractivity.MolEndocrinol.1987;1:68–74.

22.LiddleGW.Analysisofcircadianrhythmsinhumanadrenocortical

secretoryactivity.ArchInternMed.1966;117:739–743.

23.QianX,DrosteSK,LightmanSL,ReulJM,LinthorstAC.Circa-dianandultradianrhythmsoffreeglucocorticoidhormonearehighlysynchronizedbetweentheblood,thesubcutaneoustissue,andthebrain.Endocrinology.2012;153:4346–4353.

24.VeldhuisJD,IranmaneshA,LizarraldeG,JohnsonML.Amplitude

endo.endojournals.org1003

modulationofaburstlikemodeofcortisolsecretionsubservesthecircadianglucocorticoidrhythm.AmJPhysiol.1989;257:E6–E14.

25.

SchmidW,StrahleU,SchutzG,SchmittJ,StunnenbergH.Glu-cocorticoidreceptorbindscooperativelytoadjacentrecognitionsites.EMBOJ.1989;8:2257–2263.

26.

SchenaM,FreedmanLP,YamamotoKR.Mutationsinthegluco-corticoidreceptorzincfingerregionthatdistinguishinterdigitatedDNAbindingandtranscriptionalenhancementactivities.GenesDev.1989;3:1590–1601.

27.

StrahleU,KlockG,SchutzG.ADNAsequenceof15basepairsissufficienttomediatebothglucocorticoidandprogesteroneinduc-tionofgeneexpression.ProcNatlAcadSciUSA.1987;84:7871–7875.

28.LefstinJA,YamamotoKR.AllostericeffectsofDNAontranscrip-tionalregulators.Nature.1998;392:885–888.

29.

MeijsingSH,PufallMA,SoAY,BatesDL,ChenL,YamamotoKR.DNAbindingsitesequencedirectsglucocorticoidreceptorstruc-tureandactivity.Science.2009;324:407–410.

30.

VossTC,SchiltzRL,SungMH,etal.Dynamicexchangeatreg-ulatoryelementsduringchromatinremodelingunderliesassistedloadingmechanism.Cell.2011;146:544–554.

31.

DeBosscherK,HaegemanG.2009Minireview:latestperspectivesonantiinflammatoryactionsofglucocorticoids.MolEndocrinol.200923(3):281–291

32.

McNallyJG,MullerWG,WalkerD,WolfordR,HagerGL.Theglucocorticoidreceptor:rapidexchangewithregulatorysitesinlivingcells.Science.2000;287:1262–1265.

33.

DostertA,HeinzelT.Negativeglucocorticoidreceptorresponseelementsandtheirroleinglucocorticoidaction.CurrPharmDes.2004;10:2807–2816.

34.

MorrisonN,EismanJ.Roleofthenegativeglucocorticoidregu-latoryelementinglucocorticoidrepressionofthehumanosteocal-cinpromoter.JBoneMinerRes.1993;8:969–975.

35.

SurjitM,GantiKP,MukherjiA,etal.Widespreadnegativere-sponseelementsmediatedirectrepressionbyagonist-ligandedglu-cocorticoidreceptor.Cell.2011;145:224–241.

36.

GarsideH,StevensA,FarrowS,etal.Glucocorticoidligandsspec-ifydifferentinteractionswithNF-␬BbyallostericeffectsontheglucocorticoidreceptorDNAbindingdomain.JBiolChem.2004;279:50050–50059.

37.

ScheinmanRI,GualbertoA,JewellCM,CidlowskiJA,BaldwinASJr.CharacterizationofmechanismsinvolvedintransrepressionofNF-␬Bbyactivatedglucocorticoidreceptors.MolCellBiol.1995;15:943–953.

38.KarinM.Newtwistsingeneregulationbyglucocorticoidreceptor:isDNAbindingdispensable?Cell.1998;93:487–490.

39.

KasselO,HerrlichP.Crosstalkbetweentheglucocorticoidrecep-torandothertranscriptionfactors:molecularaspects.MolCellEndocrinol.2007;275:13–29.

40.DeBosscherK.Selectiveglucocorticoidreceptormodulators.JSte-roidBiochemMolBiol.2010;120:96–104.

41.

NewtonR,HoldenNS,CatleyMC,etal.Repressionofinflam-matorygeneexpressioninhumanpulmonaryepithelialcellsbysmall-moleculeI␬Bkinaseinhibitors.JPharmacolExpTher.2007;321:734–742.

42.

DeBosscherK,HaegemanG,ElewautD.Targetinginflammationusingselectiveglucocorticoidreceptormodulators.CurrOpinPharmacol.2010;10:497–504.

43.

DoggrellS.IsAL-438likelytohavefewersideeffectsthantheglucocorticoids?ExpertOpinInvestigDrugs.2003;12:1227–1229.

44.

MinerJN,ArdeckyB,BenbatoulK,etal.Antiinflammatoryglu-cocorticoidreceptorligandwithreducedsideeffectsexhibitsanalteredprotein-proteininteractionprofile.ProcNatlAcadSciUSA.2007;104:19244–19249.

45.

SchackeH,RehwinkelH,AsadullahK.Dissociatedglucocorticoid

1004VandevyveretalAnti-inflammatoryPotentialofGRDimersreceptorligands:compoundswithanimprovedtherapeuticindex.CurrOpinInvestigDrugs.2005;6:503–507.

46.

ScheinmanRI,CogswellPC,LofquistAK,BaldwinASJr.RoleoftranscriptionalactivationofI␬B␣inmediationofimmunosup-pressionbyglucocorticoids.Science.1995;270:283–286.

47.ClarkAR.Anti-inflammatoryfunctionsofglucocorticoid-inducedgenes.MolCellEndocrinol.2007;275:79–97.

48.

vanRaalteDH,OuwensDM,DiamantM.Novelinsightsintoglucocorticoid-mediateddiabetogeniceffects:towardsexpansionoftherapeuticoptions?Eurjclininvestig.2009;39:81–93.

49.

TuckermannJP,ReichardtHM,ArribasR,etal.TheDNAbind-ing-independentfunctionoftheglucocorticoidreceptormediatesrepressionofAP-1-dependentgenesinskin.JCellBiol.1999;147:1365–1370.

50.

HeckS,BenderK,KullmannM,GottlicherM,HerrlichP,CatoAC.I␬B␣-independentdownregulationofNF-␬Bactivitybyglu-cocorticoidreceptor.EmboJ.1997;16:4698–4707.

51.

HeckS,KullmannM,GastA,etal.AdistinctmodulatingdomaininglucocorticoidreceptormonomersintherepressionofactivityofthetranscriptionfactorAP-1.EMBOJ.1994;13:4087–4095.52.

OgawaS,LozachJ,BennerC,etal.Moleculardeterminantsofcrosstalkbetweennuclearreceptorsandtoll-likereceptors.Cell.2005;122:707–721.

53.

ReilyMM,PantojaC,HuX,ChinenovY,RogatskyI.TheGRIP1:IRF3interactionasatargetforglucocorticoidreceptor-mediatedimmunosuppression.EmboJ.2006;25:108–117.

54.

SmoakKA,CidlowskiJA.Mechanismsofglucocorticoidreceptorsignalingduringinflammation.MechAgeingDev.2004;125:697–706.

55.

GlassCK,SaijoK.NuclearreceptortransrepressionpathwaysthatregulateinflammationinmacrophagesandTcells.NatRevIm-munol.2010;10:365–376.

56.

BaschantU,FrappartL,RauchhausU,etal.Glucocorticoidther-apyofantigen-inducedarthritisdependsonthedimerizedgluco-corticoidreceptorinTcells.ProcNatlAcadSciUSA.2011;108:19317–19322.

57.

KleimanA,HubnerS,RodriguezParkitnaJM,etal.Glucocorti-coidreceptordimerizationisrequiredforsurvivalinsepticshockviasuppressionofinterleukin-1inmacrophages.FasebJ.2012;26:722–729.

58.

TuckermannJP,KleimanA,MorigglR,etal.Macrophagesandneutrophilsarethetargetsforimmunesuppressionbyglucocorti-coidsincontactallergy.JClinInvest.2007;117:1381–1390.59.

VandevyverS,DejagerL,VanBogaertT,etal.GlucocorticoidreceptordimerizationinducesMKP1toprotectagainstTNF-in-ducedinflammation.JClinInvest.2012;122:2130–2140.

60.

ReichardtHM,TuckermannJP,GottlicherM,etal.RepressionofinflammatoryresponsesintheabsenceofDNAbindingbytheglucocorticoidreceptor.EmboJ.2001;20:7168–7173.

61.

JewellCM,ScoltockAB,HamelBL,YudtMR,CidlowskiJA.Complexhumanglucocorticoidreceptordimmutationsdefineglu-cocorticoidinducedapoptoticresistanceinbonecells.MolEndo-crinol.2012;26:244–256.

62.

SavoryJG,PrefontaineGG,LamprechtC,etal.Glucocorticoidreceptorhomodimersandglucocorticoid-mineralocorticoidrecep-torheterodimersforminthecytoplasmthroughalternativedimerizationinterfaces.MolCellBiol.2001;21:781–793.

63.

BledsoeRK,MontanaVG,StanleyTB,etal.Crystalstructureoftheglucocorticoidreceptorligandbindingdomainrevealsanovelmodeofreceptordimerizationandcoactivatorrecognition.Cell.2002;110:93–105.

64.

ColeTJ,BlendyJA,MonaghanAP,etal.Targeteddisruptionoftheglucocorticoidreceptorgeneblocksadrenergicchromaffincellde-velopmentandseverelyretardslungmaturation.GenesDev.1995;9:1608–1621.

65.

OitzlMS,ReichardtHM,JoelsM,deKloetER.PointmutationinthemouseglucocorticoidreceptorpreventingDNAbindingim-

Endocrinology,March2013,154(3):993–1007

pairsspatialmemory.ProcNatlAcadSciUSA.2001;98:12790–12795.

66.

AsadaM,RauchA,ShimizuH,etal.DNAbinding-dependentglucocorticoidreceptoractivitypromotesadipogenesisviaKrup-pel-likefactor15geneexpression.LabInvest.2011;91:203–215.67.

BayoP,SanchisA,BravoA,etal.Glucocorticoidreceptorisre-quiredforskinbarriercompetence.Endocrinology.2008;149:1377–1388.

68.

EhrchenJ,SteinmullerL,BarczykK,etal.Glucocorticoidsinducedifferentiationofaspecificallyactivated,anti-inflammatorysub-typeofhumanmonocytes.Blood.2007;109:1265–1274.

69.

DickinsonRJ,KeyseSM.Diversephysiologicalfunctionsfordual-specificityMAPkinasephosphatases.JCellSci.2006;119:4607–4615.

70.

JeffreyKL,CampsM,RommelC,MackayCR.Targetingdual-specificityphosphatases:manipulatingMAPkinasesignallingandimmuneresponses.NatRevImmunol.2007;6:391–403.

71.

AlessiDR,SmytheC,KeyseSM.ThehumanCL100geneencodesaTyr/Thr-proteinphosphatasewhichpotentlyandspecificallyin-activatesMAPkinaseandsuppressesitsactivationbyoncogenicrasinXenopusoocyteextracts.Oncogene.1993;8:2015–2020.72.

SunH,CharlesCH,LauLF,TonksNK.MKP-1(3CH134),animmediateearlygeneproduct,isadualspecificityphosphatasethatdephosphorylatesMAPkinaseinvivo.Cell.1993;75:487–493.73.

FranklinCC,KraftAS.Conditionalexpressionofthemitogen-activatedproteinkinase(MAPK)phosphataseMKP-1preferen-tiallyinhibitsp38MAPKandstress-activatedproteinkinaseinU937cells.JBiolChem.1997;272:16917–16923.

74.

LiuY,GorospeM,YangC,HolbrookNJ.Roleofmitogen-acti-vatedproteinkinasephosphataseduringthecellularresponsetogenotoxicstress.Inhibitionofc-JunN-terminalkinaseactivityandAP-1-dependentgeneactivation.JBiolChem.1995;270:8377–8380.

75.

RaingeaudJ,GuptaS,RogersJS,etal.Pro-inflammatorycytokinesandenvironmentalstresscausep38mitogen-activatedproteinki-naseactivationbydualphosphorylationontyrosineandthreonine.JBiolChem.1995;270:7420–7426.

76.

HutterD,ChenP,BarnesJ,LiuY.Catalyticactivationofmitogen-activatedprotein(MAP)kinasephosphatase-1bybindingtop38MAPkinase:criticalroleofthep38C-terminaldomaininitsneg-ativeregulation.BiochemJ.2000;352Pt.1:155–163.

77.

ReddyTE,PauliF,SprouseRO,etal.Genomicdeterminationoftheglucocorticoidresponserevealsunexpectedmechanismsofgeneregulation.GenomeRes.2009;19:2163–2171.

78.

ShippLE,LeeJV,YuCY,etal.Transcriptionalregulationofhu-mandualspecificityproteinphosphatase1(DUSP1)genebyglu-cocorticoids.PLoSOne.2010;5:e13754.

79.

AbrahamSM,LawrenceT,KleimanA,etal.Antiinflammatoryeffectsofdexamethasonearepartlydependentoninductionofdualspecificityphosphatase1.JExpMed.2006;203:1883–1889.80.

BhattacharyyaS,BrownDE,BrewerJA,VogtSK,MugliaLJ.Mac-rophageglucocorticoidreceptorsregulateToll-likereceptor4-me-diatedinflammatoryresponsesbyselectiveinhibitionofp38MAPkinase.Blood.2007;109:4313–4319.

81.

WangX,NelinLD,KuhlmanJR,MengX,WeltySE,LiuY.TheroleofMAPkinasephosphatase-1intheprotectivemechanismofdexamethasoneagainstendotoxemia.LifeSci.2008;83:671–680.82.

CanteriniS,BoscoA,DeMatteisV,MangiaF,FiorenzaMT.THG-1pitmovestonucleusattheonsetofcerebellargranuleneu-ronsapoptosis.MolCellNeurosci.2009;40:249–257.

83.

D’AdamioF,ZolloO,MoracaR,etal.Anewdexamethasone-inducedgeneoftheleucinezipperfamilyprotectsTlymphocytesfromTCR/CD3-activatedcelldeath.Immunity.1997;7:803–812.84.

ShibanumaM,KurokiT,NoseK.Isolationofageneencodingaputativeleucinezipperstructurethatisinducedbytransforminggrowthfactor␤1andothergrowthfactors.JBiolChem.1992;267:10219–10224.

Endocrinology,March2013,154(3):993–100785.RauchA,SeitzS,BaschantU,etal.Glucocorticoidssuppressbone

formationbyattenuatingosteoblastdifferentiationviathemono-mericglucocorticoidreceptor.CellMetab.2010;11:517–531.86.AyroldiE,MiglioratiG,BruscoliS,etal.ModulationofT-cell

activationbytheglucocorticoid-inducedleucinezipperfactorviainhibitionofnuclearfactor␬B.Blood.2001;98:743–753.

87.AyroldiE,ZolloO,MacchiaruloA,DiMarcoB,MarchettiC,

RiccardiC.Glucocorticoid-inducedleucinezipperinhibitstheRaf-extracellularsignal-regulatedkinasepathwaybybindingtoRaf-1.MolCellBiol.2002;22:7929–7941.

88.KatzME,McCormickF.SignaltransductionfrommultipleRas

effectors.CurrOpinGenetDev.1997;7:75–79.

89.MalumbresM,BarbacidM.RASoncogenes:thefirst30years.Nat

RevImmunol.2003;3:459–465.

90.VojtekAB,DerCJ.IncreasingcomplexityoftheRassignaling

pathway.JBiolChem.1998;273:19925–19928.

91.MittelstadtPR,AshwellJD.InhibitionofAP-1bytheglucocorti-coid-inducibleproteinGILZ.JBiolChem.2001;276:29603–29610.

92.CannarileL,CuzzocreaS,SantucciL,etal.Glucocorticoid-in-ducedleucinezipperisprotectiveinTh1-mediatedmodelsofcoli-tis.Gastroenterology.2009;136:530–541.

93.BeaulieuE,NgoD,SantosL,etal.Glucocorticoid-inducedleucine

zipperisanendogenousantiinflammatorymediatorinarthritis.ArthritisRheum.2010;62:2651–2661.

94.SrinivasanM,JanardhanamS.Novelp65bindingglucocorticoid-inducedleucinezipperpeptidesuppressesexperimentalautoim-muneencephalomyelitis.JBiolChem.2011;286:44799–44810.95.EddlestonJ,HerschbachJ,Wagelie-SteffenAL,ChristiansenSC,

ZurawBL.Theanti-inflammatoryeffectofglucocorticoidsisme-diatedbyglucocorticoid-inducedleucinezipperinepithelialcells.JAllergyClinImmunol.2007;119:115–122.

96.MathurinP,DengQG,KeshavarzianA,ChoudharyS,Holmes

EW,TsukamotoH.Exacerbationofalcoholicliverinjurybyen-teralendotoxininrats.Hepatology.2000;32:1008–1017.

97.GerkeV,MossSE.Annexins:fromstructuretofunction.Physiol

Rev.2002;82:331–371.

98.KovacicRT,TizardR,CateRL,FreyAZ,WallnerBP.Correlation

ofgeneandproteinstructureofratandhumanlipocortinI.Bio-chemistry.1991;30:9015–9021.

99.BlackwellGJ,CarnuccioR,DiRosaM,FlowerRJ,ParenteL,

PersicoP.Macrocortin:apolypeptidecausingtheanti-phospho-lipaseeffectofglucocorticoids.Nature.1980;287:147–149.

100.LiuJ,MunozNM,MelitonAY,etal.␤2-Integrinadhesioncaused

byeotaxinbutnotIL-5isblockedbyPDE-4inhibitionand␤2-adrenoceptoractivationinhumaneosinophils.PulmPharmacolTher.2004;17:73–79.

101.PerrettiM,D’AcquistoF.AnnexinA1andglucocorticoidsasef-fectorsoftheresolutionofinflammation.NatRevImmunol.2009;9:62–70.

102.WangZM,ZhuSG,WuZW,LuY,FuHZ,QianRQ.Kirenol

upregulatesnuclearannexin-1whichinteractswithNF-␬Btoat-tenuatesynovialinflammationofcollagen-inducedarthritisinrats.JEthnopharmacol.2011;137:774–782.

103.ZhangZ,HuangL,ZhaoW,RigasB.Annexin1inducedbyanti-inflammatorydrugsbindstoNF-␬Bandinhibitsitsactivation:anticancereffectsinvitroandinvivo.CancerRes.2010;70:2379–2388.

104.D’AmicoM,DiFilippoC,LaM,etal.Lipocortin1reducesmyo-cardialischemia-reperfusioninjurybyaffectinglocalleukocytere-cruitment.FASEBJ.2000;14:1867–1869.

105.DamazoAS,SampaioAL,NakataCM,FlowerRJ,PerrettiM,

OlianiSM.EndogenousannexinA1counter-regulatesbleomycin-inducedlungfibrosis.BMCImmunol.2011;12:59.

106.VongL,FerrazJG,DuftonN,etal.Up-regulationofAnnexin-A1

andlipoxinA(4)inindividualswithulcerativecolitismaypromotemucosalhomeostasis.PLoSOne.2012;7:e39244.endo.endojournals.org1005

107.YangYH,MorandEF,GettingSJ,etal.Modulationofinflam-mationandresponsetodexamethasonebyAnnexin1inantigen-inducedarthritis.ArthritisRheum.2004;50:976–984.

108.BabbinBA,LaukoetterMG,NavaP,etal.AnnexinA1regulates

intestinalmucosalinjury,inflammation,andrepair.JImmunol.2008;181:5035–5044.

109.OlianiSM,CioccaGA,PimentelTA,DamazoAS,GibbsL,Perretti

M.Fluctuationofannexin-A1positivemastcellsinchronicgran-ulomatousinflammation.InflammRes.2008;57:450–456.

110.YangY,HutchinsonP,MorandEF.InhibitoryeffectofannexinI

onsynovialinflammationinratadjuvantarthritis.ArthritisRheum.1999;42:1538–1544.

111.MartinGR,PerrettiM,FlowerRJ,WallaceJL.Annexin-1mod-ulatesrepairofgastricmucosalinjury.AmJPhysiolEndocrinolMetab.2008;294:G764–G769.

112.OuyangN,ZhuC,ZhouD,etal.MC-12,anAnnexinA1-based

peptide,iseffectiveinthetreatmentofexperimentalcolitis.PLoSOne.2012;7:e41585.

113.TischnerD,ReichardtHM.Glucocorticoidsinthecontrolofneu-roinflammation.MolCellEndocrinol.2007;275:62–70.

114.RuzekMC,PearceBD,MillerAH,BironCA.Endogenousgluco-corticoidsprotectagainstcytokine-mediatedlethalityduringviralinfection.JImmunol.1999;162:3527–3533.

115.GalonJ,FranchimontD,HiroiN,etal.Geneprofilingreveals

unknownenhancingandsuppressiveactionsofglucocorticoidsonimmunecells.FasebJ.2002;16:61–71.

116.DiefenbacherM,SekulaS,HeilbockC,etal.RestrictiontoFos

familymembersofTrip6-dependentcoactivationandglucocorti-coidreceptor-dependenttrans-repressionofactivatorprotein-1.MolEndocrinol.2008;22:1767–1780.

117.ButtgereitF,ZhouH,KalakR,etal.Transgenicdisruptionof

glucocorticoidsignalinginmatureosteoblastsandosteocytesat-tenuatesK/BxNmouseserum-inducedarthritisinvivo.ArthritisRheum.2009;60:1998–2007.

118.HermosoMA,MatsuguchiT,SmoakK,CidlowskiJA.Glucocor-ticoidsandtumornecrosisfactor␣cooperativelyregulatetoll-likereceptor2geneexpression.MolCellBiol.2004;24:4743–4756.119.McMasterA,RayDW.Modellingtheglucocorticoidreceptorand

producingtherapeuticagentswithanti-inflammatoryeffectsbutreducedside-effects.ExpPhysiol.2007;92:299–309.

120.ReberLL,DaubeufF,PlantingaM,etal.Adissociatedglucocor-ticoidreceptormodulatorreducesairwayhyperresponsivenessandinflammationinamousemodelofasthma.JImmunol.2012;188:3478–3487.

121.RosenJ,MinerJN.Thesearchforsaferglucocorticoidreceptor

ligands.EndocrRev.2005;26:452–464.

122.KleimanA,TuckermannJP.Glucocorticoidreceptoractioninben-eficialandsideeffectsofsteroidtherapy:lessonsfromconditionalknockoutmice.MolCellEndocrinol.2007;275:98–108.

123.GroseR,WernerS,KesslerD,etal.Aroleforendogenousgluco-corticoidsinwoundrepair.EMBORep.2002;3:575–582.

124.ReichardtSD,FollerM,RexhepajR,etal.Glucocorticoidsen-hanceintestinalglucoseuptakeviathedimerizedglucocorticoidreceptorinenterocytes.Endocrinology.2012;153:1783–1794.125.ConawayHH,PirhayatiA,PerssonE,etal.Retinoidsstimulate

periostealboneresorptionbyenhancingtheproteinRANKL,aresponseinhibitedbymonomericglucocorticoidreceptor.JBiolChem.2011;286:31425–31436.

126.WaddellDS,BaehrLM,vandenBrandtJ,etal.Theglucocorticoid

receptorandFOXO1synergisticallyactivatetheskeletalmuscleatrophy-associatedMuRF1gene.AmJPhysiolEndocrinolMetab.2008;295:E785–E797.

127.DeBosscherK,VandenBergheW,BeckIM,etal.Afullydisso-ciatedcompoundofplantoriginforinflammatorygenerepression.ProcNatlAcadSciUSA.2005;102:15827–15832.

128.BosmannM,GrailerJJ,ZhuK,etal.Anti-inflammatoryeffectsof

1006VandevyveretalAnti-inflammatoryPotentialofGRDimers␤2adrenergicreceptoragonistsinexperimentalacutelunginjury.FasebJ.2012;26:2137–2144.

129.

BauvoisB,DauzonneD.Aminopeptidase-N/CD13(EC3.4.11.2)inhibitors:chemistry,biologicalevaluations,andtherapeuticpros-pects.MedicinalResRev.2006;26:88–130.

130.

CoonS,KekudaR,SahaP,SundaramU.Glucocorticoidsdiffer-entiallyregulateNa-bileacidcotransportinnormalandchroni-callyinflamedrabbitilealvilluscells.AmJPhysiolEndocrinolMetab.2010;298:G675–G682.

131.

DavieRJ,HosieKB,GroblerSP,Newbury-EcobRA,KeighleyMR,BirchNJ.IlealbileacidmalabsorptionincolonicCrohn’sdisease.BrJSurg.1994;81:289–290.

132.

JungD,FantinAC,ScheurerU,FriedM,Kullak-UblickGA.Hu-manilealbileacidtransportergeneASBT(SLC10A2)istransac-tivatedbytheglucocorticoidreceptor.Gut.2004;53:78–84.133.

CatoAC,GeisseS,WenzM,WestphalHM,BeatoM.Thenucle-otidesequencesrecognizedbytheglucocorticoidreceptorintherabbituteroglobingeneregionarelocatedfarupstreamfromtheinitiationoftranscription.EmboJ.1984;3:2771–2778.

134.

HagenG,WolfM,KatyalSL,SinghG,BeatoM,SuskeG.Tissue-specificexpression,hormonalregulationand5Ј-flankinggenere-gionoftheratClaracell10kDaprotein:comparisontorabbituteroglobin.NucleicAcidsRes.1990;18:2939–2946.

135.

JantzenK,FrittonHP,Igo-KemenesT,etal.PartialoverlappingofbindingsequencesforsteroidhormonereceptorsandDNaseIhy-persensitivesitesintherabbituteroglobingeneregion.NucleicAcidsRes.1987;15:4535–4552.

136.

LesurO,BernardA,ArsalaneK,etal.Claracellprotein(CC-16)inducesaphospholipaseA2-mediatedinhibitionoffibroblastmi-grationinvitro.AmJRespirCritCareMed.1995;152:290–297.137.

MahtaniKR,BrookM,DeanJL,SullyG,SaklatvalaJ,ClarkAR.Mitogen-activatedproteinkinasep38controlstheexpressionandposttranslationalmodificationoftristetraprolin,aregulatoroftu-mornecrosisfactor␣mRNAstability.MolCellBiol.2001;21:6461–6469.

138.

MukherjeeAB,KunduGC,MandalAK,PattabiramanN,YuanCJ,ZhangZ.Uteroglobin:physiologicalroleinnormalglomerularfunctionuncoveredbytargeteddisruptionoftheuteroglobingeneinmice.AmJKidneyDis.1998;32:1106–1120.

139.

MukherjeeAB,ZhangZ,ChiltonBS.Uteroglobin:asteroid-in-ducibleimmunomodulatoryproteinthatfoundedtheSecretoglo-binsuperfamily.EndocrRev.2007;28:707–725.

140.

HoggerP,ErpensteinU,RohdewaldP,SorgC.Biochemicalcharacterizationofaglucocorticoid-inducedmembraneprotein(RM3/1)inhumanmonocytesanditsapplicationasmodelsys-temforrankingglucocorticoidpotency.PharmRes.1998;15:296–302.

141.

KowalK,SilverR,SlawinskaE,BieleckiM,ChyczewskiL,Kowal-BieleckaO.CD163anditsroleininflammation.FoliaHistochemCytobiol.2011;49:365–374.

142.

SchaerDJ,BorettiFS,HongeggerA,etal.MolecularcloningandcharacterizationofthemouseCD163homologue,ahighlygluco-corticoid-induciblememberofthescavengerreceptorcysteine-richfamily.Immunogenetics.2001;53:170–177.

143.

SchaerDJ,BorettiFS,SchoedonG,SchaffnerA.InductionoftheCD163-dependenthaemoglobinuptakebymacrophagesasanovelanti-inflammatoryactionofglucocorticoids.BrJHaematol.2002;119:239–243.

144.

YoungJD,LawrenceAJ,MacLeanAG,etal.Thymosin␤4sul-foxideisananti-inflammatoryagentgeneratedbymonocytesinthepresenceofglucocorticoids.NatMed.1999;5:1424–1427.

145.

GrahamTE,KeyTA,KilpatrickK,DorinRI.Dexras1/AGS-1,asteroidhormone-inducedguanosinetriphosphate-bindingprotein,inhibits3Ј,5Ј-cyclicadenosinemonophosphate-stimulatedsecre-tioninAtT-20corticotrophcells.Endocrinology.2001;142:2631–2640.

146.

GrahamTE,ProssnitzER,DorinRI.Dexras1/AGS-1inhibitssig-

Endocrinology,March2013,154(3):993–1007

naltransductionfromtheGi-coupledformylpeptidereceptortoErk-1/2MAPkinases.JBiolChem.2002;277:10876–10882.147.

KemppainenRJ,BehrendEN.Dexamethasonerapidlyinducesanovelrassuperfamilymember-relatedgeneinAtT-20cells.JBiolChem.1998;273:3129–3131.

148.

NguyenCH,WattsVJ.Dexamethasone-inducedRasprotein1negativelyregulatesproteinkinaseCdelta:implicationsforad-enylylcyclase2signaling.MolPharmacol.2006;69:1763–1771.149.

HiragunT,PengZ,BeavenMA.Dexamethasoneup-regulatestheinhibitoryadaptorproteinDok-1andsuppressesdownstreamac-tivationofthemitogen-activatedproteinkinasepathwayinanti-gen-stimulatedRBL-2H3mastcells.MolPharmacol.2005;67:598–603.

150.

FontenotJD,GavinMA,RudenskyAY.Foxp3programsthede-velopmentandfunctionofCD4ϩCD25ϩregulatoryTcells.NatImmunol.2003;4:330–336.

151.

KaragiannidisC,AkdisM,HolopainenP,etal.GlucocorticoidsupregulateFOXP3expressionandregulatoryTcellsinasthma.JAllergyClinImmunol.2004;114:1425–1433.

152.

GayoA,MozoL,SuarezA,TunonA,LahozC,GutierrezC.Glu-cocorticoidsincreaseIL-10expressioninmultiplesclerosispatientswithacuterelapse.JNeuroimmunol.1998;85:122–130.

153.

VerhoefCM,vanRoonJA,VianenME,LafeberFP,BijlsmaJW.Theimmunesuppressiveeffectofdexamethasoneinrheumatoidarthritisisaccompaniedbyupregulationofinterleukin10andbydifferentialchangesininterferongammaandinterleukin4pro-duction.AnnRheumDis.1999;58:49–54.

154.

NeumannD,KolleweC,MartinMU,BoraschiD.ThemembraneformofthetypeIIIL-1receptoraccountsforinhibitoryfunction.JImmunol.2000;165:3350–3357.

155.

ReF,MuzioM,DeRossiM,etal.ThetypeII“receptor”asadecoytargetforinterleukin1inpolymorphonuclearleukocytes:charac-terizationofinductionbydexamethasoneandligandbindingprop-ertiesofthereleaseddecoyreceptor.JExpMed.1994;179:739–743.

156.

LevineSJ,BenfieldT,ShelhamerJH.Corticosteroidsinducein-tracellularinterleukin-1receptorantagonisttypeIexpressionbyahumanairwayepithelialcellline.AmJRespirCellMolBiol.1996;15:245–251.

157.

AuphanN,DiDonatoJA,RosetteC,HelmbergA,KarinM.Im-munosuppressionbyglucocorticoids:inhibitionofNF-␬BactivitythroughinductionofI␬Bsynthesis.Science.1995;270:286–290.158.

DerooBJ,ArcherTK.GlucocorticoidreceptoractivationoftheI␬B␣promoterwithinchromatin.MolBiolCell.2001;12:3365–3374.

159.

DasH,KumarA,LinZ,etal.Kruppel-likefactor2(KLF2)reg-ulatesproinflammatoryactivationofmonocytes.ProcNatlAcadSciUSA.2006;103:6653–6658.

160.

ChiversJE,GongW,KingEM,etal.AnalysisofthedissociatedsteroidRU24858doesnotexcludearoleforinduciblegenesintheanti-inflammatoryactionsofglucocorticoids.MolPharmacol.2006;70:2084–2095.

161.

YaoXL,CowanMJ,GladwinMT,LawrenceMM,AngusCW,ShelhamerJH.Dexamethasonealtersarachidonatereleasefromhumanepithelialcellsbyinductionofp11proteinsynthesisandinhibitionofphospholipaseA2activity.JBiolChem.1999;274:17202–17208.

162.

ZhangL,LiH,HuX,LiXX,SmerinS,UrsanoR.Glucocorticoid-inducedp11over-expressionandchromatinremodeling:anovelmolecularmechanismoftraumaticstress?MedHypotheses.2011;76:774–777.

163.

SamuelssonMK,PazirandehA,DavaniB,OkretS.p57Kip2,aglucocorticoid-inducedinhibitorofcellcycleprogressioninHeLacells.MolEndocrinol.1999;13:1811–1822.

164.

HiragunT,PengZ,BeavenMA.Cuttingedge:dexamethasonenegativelyregulatesSykinmastcellsbyup-regulatingSRC-likeadaptorprotein.JImmunol.2006;177:2047–2050.

Endocrinology,March2013,154(3):993–1007165.Abbinante-NissenJM,SimpsonLG,LeikaufGD.Corticosteroids

increasesecretoryleukocyteproteaseinhibitortranscriptlevelsinairwayepithelialcells.AmJPhysiol.1995;268:L601–L606.

166.BrewerBY,MalickaJ,BlackshearPJ,WilsonGM.RNAsequence

elementsrequiredforhighaffinitybindingbythezincfingerdo-mainoftristetraprolin:conformationalchangescoupledtothebi-partitenatureofAu-richMRNA-destabilizingmotifs.JBiolChem.2004;279:27870–27877.

167.CarrickDM,LaiWS,BlackshearPJ.ThetandemCCCHzincfin-gerproteintristetraprolinanditsrelevancetocytokinemRNAturnoverandarthritis.ArthritisResTher.2004;6:248–264.

168.LaiWS,CarballoE,StrumJR,KenningtonEA,PhillipsRS,Black-shearPJ.EvidencethattristetraprolinbindstoAU-richelementsandpromotesthedeadenylationanddestabilizationoftumorne-crosisfactor␣mRNA.MolCellBiol.1999;19:4311–4323.

169.SmoakK,CidlowskiJA.Glucocorticoidsregulatetristetraprolin

synthesisandposttranscriptionallyregulatetumornecrosisfactor␣inflammatorysignaling.MolCellBiol.2006;26:9126–9135.170.WorthingtonMT,PeloJW,SachedinaMA,ApplegateJL,Arse-neauKO,PizarroTT.RNAbindingpropertiesoftheAU-richelement-bindingrecombinantNup475/TIS11/tristetraprolinpro-tein.JBiolChem.2002;277:48558–48564.

171.IshmaelFT,FangX,GaldieroMR,etal.RoleoftheRNA-binding

proteintristetraprolininglucocorticoid-mediatedgeneregulation.JImmunol.2008;180:8342–8353.

172.MaierJV,BremaS,TuckermannJ,etal.Dualspecificityphos-phatase1knockoutmiceshowenhancedsusceptibilitytoanaphy-laxisbutaresensitivetoglucocorticoids.MolEndocrinol.2007;21:2663–2671.

173.MattaR,BarnardJA,WancketLM,etal.KnockoutofMkp-1

exacerbatescolitisinIl-10-deficientmice.AmJPhysiolEndocrinolMetab.2012;302:G1322–G1335.

174.WuJJ,RothRJ,AndersonEJ,etal.MicelackingMAPkinase

phosphatase-1haveenhancedMAPkinaseactivityandresistancetodiet-inducedobesity.CellMetab.2006;4:61–73.

175.ZhangH,PodojilJR,LuoX,MillerSD.Intrinsicandinduced

regulationoftheage-associatedonsetofspontaneousexperimental

endo.endojournals.org1007

autoimmuneencephalomyelitis.JImmunol.2008;181:4638–4647.

176.

SalojinKV,OwusuIB,MillerchipKA,PotterM,PlattKA,OraveczT.EssentialroleofMAPKphosphatase-1inthenegativecontrolofinnateimmuneresponses.JImmunol.2006;176:1899–1907.177.SartoriR,LiF,KirkwoodKL.MAPkinasephosphatase-1protectsagainstinflammatoryboneloss.JDentRes.2009;88:1125–1130.178.

JinY,CalvertTJ,ChenB,etal.MicedeficientinMkp-1developmoreseverepulmonaryhypertensionandgreaterlungproteinlev-elsofarginaseinresponsetochronichypoxia.AmJPhysiolHeartCircPhysiol.2010;298:H1518–H1528.

179.

FrazierWJ,WangX,WancketLM,etal.Increasedinflammation,impairedbacterialclearance,andmetabolicdisruptionaftergram-negativesepsisinMkp-1-deficientmice.JImmunol.2009;183:7411–7419.

180.

WangX,MengX,KuhlmanJR,etal.KnockoutofMkp-1en-hancesthehostinflammatoryresponsestogram-positivebacteria.JImmunol.2007;178:5312–5320.

181.

KaiserRA,BuenoOF,LipsDJ,etal.Targetedinhibitionofp38mitogen-activatedproteinkinaseantagonizescardiacinjuryandcelldeathfollowingischemia-reperfusioninvivo.JBiolChem.2004;279:15524–15530.

182.

ChiH,BarrySP,RothRJ,etal.Dynamicregulationofpro-andanti-inflammatorycytokinesbyMAPKphosphatase1(MKP-1)ininnateimmuneresponses.ProcNatlAcadSciUSA.2006;103:2274–2279.

183.

HammerM,MagesJ,DietrichH,etal.Dualspecificityphos-phatase1(DUSP1)regulatesasubsetofLPS-inducedgenesandprotectsmicefromlethalendotoxinshock.JExpMed.2006;203:15–20.

184.

ZhaoQ,WangX,NelinLD,etal.MAPkinasephosphatase1controlsinnateimmuneresponsesandsuppressesendotoxicshock.JExpMed.2006;203:131–140.

185.

HammerM,EchtenachterB,WeighardtH,etal.Increasedinflam-mationandlethalityofDusp1-/-miceinpolymicrobialperitonitismodels.Immunology.2010;131:395–404.

186.

NimahM,ZhaoB,DenenbergAG,etal.ContributionofMKP-1regulationofp38toendotoxintolerance.Shock.2005;23:80–87.

因篇幅问题不能全部显示,请点此查看更多更全内容