本章主要研究汽油喷射系统的组成、结构、工作原理,以讲示工作原理图为重点,分析各个组件的工作过程,找出其中的一般规律。 本章主要内容有:1、汽油喷射系统概述;2、传感器;3、执行器;4、汽油喷射系统的结构与工作原理。
第一节 电控燃油喷射系统概述
一、汽油喷射系统的发展及应用
自从1967年博世BOSCH公司研制开发成功了K型机械式汽油喷射系统以来,汽油喷射系统经历了K(机械式)型系统,K—E(机械与电子混合控制)型系统,EFI(电控燃油喷射系统)的发展过程。 BOSCH公司汽油机燃油喷射系统及点火系统发展里历程
汽油机的燃油喷射和点火使发动机得以运转。汽油喷射到发动机进气门上方的进气管内,当活塞下行时,空气—燃油混合气被吸人燃烧室内,而当活塞再次上行时,空气—燃油混合气被压缩,并由火花塞产生的电火花点燃。燃烧产生的能量推动活塞下行,并通过连杆把活塞的直线运动转化为曲轴的旋转运动。
起先,汽油喷射系统和点火系统是两个独立的系统,它们分别由各自的参数,如喷油量、点火时刻进行单独的控制。这两个系统要么不交换信息,要么只有极少量的信息交换。这意味着在某种程度上,两系统中有相互对立的需求时只能由它们自身分别去协调,而不能以“系统交互”方式解决o
Bosch公司将汽油喷射和电子点火集成为一个单元,从而解决了这个问题。汽油喷射和电子点火联合控制的Motronic发动机管理系统能够根据燃烧过程中的各种工况要求,对喷射和点火的控制参数进行优化。 1、汽油喷射系统
汽油喷射系统根据发动机的运转速度、负荷水平、环境影响等因素,精确地计量供给发动机的燃油量,从而控制混合气的空燃比,使发动机废气排放中的有害物质含量保持在一个较低的水平。 A.运用连续喷射原理的多点喷射系统
1973-1955 , 1973-1995, K-Jetronic机械液压汽油喷射系统被安装到多种汽车上。该系统根据进入发动机的空气量调节供油量。运用 闭环控制的K—Jetronic系统可以满足废气排放较低的控制标准。
为满足更高的性能要求,其中也包括为达到更高的排气质量,在K—Jetronic系统中,添加了一个ECU、一个主压力调节器、一个用于控制混合气成分的压力调节器,发展形成了KE— Jetronic系统,此系统在1982—1996年间装车使用。 B.间歇式燃油喷射系统
L—Jetronic系统是运用模拟技术的电子燃油喷射系统 (1973—1986年使用),它根据进入发动机的空气量、发动机转速 及其他一些运行参数间歇喷射燃油,L3—Jetronic是运用数字技术的控制系统,这种系统能够增加一些在模拟技术系统中无法实现的控制功能,从而使喷油量能更好的适应发动机各种变工况的使用要求。
LH—Jetronic系统(1981—1998年)用热线空气流量计,使空气—燃油混合气的计量不受环境状况的影响。 C.单点喷射间歇式燃油喷射系统
Mono—Jetronic电子喷射系统(1987—1997年)应用于中小型乘用车,单点喷油器直接装在节气门上部阀体的中心部位。这种系统也称作节气门喷射系统或TBI,发动机转速和节气门的位置是计量燃油喷射量的控制参数。 2、点火系统
点火系的功能是在正确的点火时刻点燃已压缩的混合气,引发混合气燃烧。在火花点火发动机(SI)中,点火是由穿透火花塞电极间的、瞬时放电产生的电火花来完成的。要使催化转化器有效发挥作用,绝对需要正确的点火时刻。混合气燃烧滞后会使燃烧不完全,从而使催化剂有中毒损坏的危险。随着时间的推移,电子元件逐渐取代了点火系中的机械部件。
点火时刻由发动机的速度和负荷状况计算得来,而发动机的负荷则由进气管压力换算得出。传统的线圈点火(1934--1986年)和晶体管式线圈点火(1965—1993年)运用机械控制点火时刻,半导体点火系统和半导体无分电器电子点火系统(1983—1998年)运用点火特性脉谱图确定点火时刻。 3、子系统组合
上述汽油喷射系统和点火系统的组合并非一成不变,不同形式的点火系统可以与各种喷射系统组合。
4、 Motronic发动机管理系统
Motronic将燃油喷射系统和点火系统组合在一起,形成发动机管理系统。在该系统中,一个基本的燃油喷射系统和一个电子点火系统一起构成了Motronic点火和燃油喷射系统的基础。 KE—Motronic是以连续喷射KE-Jetroric系统为基础的
Mono—Motronic是以单点间歇喷射Mono-Jetronic系统为基础的M—Motronic则是以多点间歇式进气管燃油喷射L-Jetronic系统为基础的加入电子节气门控制(ETC)的M-Motronic系统形成ME—Motronic系统。 MED-Jetronic系统把汽油直接喷射、电子点火和ETC结合成一个单独的系统。 表1—1列出了Bosch公司汽油喷射和电子点火系统的发展史:
汽油喷射系统 D-Jetronic K-Jetronic L-Jetronic LH-Jetronic KE-Jetronic Mono-Jetronic 点火系统 线圈点火(CI) 晶体管点火(TI) 半导体点火 点火和汽油喷射联合系统 M-Motronic KE-Motronic Mono-Motronic 1967-1979 1973-1995 1973-1986 1981-1998 1982-1996 1987-1997 1934-1986 1965-1993 1983-1998 1979 - 1987-1996 1989- 目前除少数汽车仍在采用K或K—E系统外,大多数都采用了EFI电控燃油喷射系统。SPI单点燃油喷射系统因其结构较简单,只用一个喷油器,发动机结构在化油器式的基础上变动较少,成本较低,故国内外现在已经迅速推广应用在低排量的普通轿车甚至载货汽车上。大排量的轿车大多采用MPI多点喷射。
目前代表国际中级轿车顶尖水平的第5代车型,如奥迪A6和帕萨特(PASSAT)B5等都是采用了多点电控喷射。而且它们还采用了德国大众集团独有的领先于世界的三大技术,即5气门技术、可变配气相位技术和可变进气管技术。以前汽车都是采用每气缸1进气门1出气门的2气门发动机,现代轿车上多数采用了2进2出的4气门发动机,而5气门发动机技术是采用3进2出的方法,在每个燃气室有5个气门,使燃气混合更快更均匀,排气也更迅速更彻底,燃烧室的空间可以得到更充分的利用。因此,发动机的动力性将得到提高,废气排放将大大减少。可变凸轮轴通过改变进排气门的开启和关闭时间(可变配气相位),使发动机在高转速工况下获得尽可能高的功率,在低转速的情况下极大的降低了燃烧不平稳性,提高转矩。采用可变通的通道进气管,即随发动机的转速和负荷改变进气路径长短,高转速时,通道变短,减少流动损失,提高高速功率。低转速时,进气通道变长,提高进气流速,增加转矩。
日本日立(HITACHI)公司近年来开发了一种MSI(Multi Stream Injection)系统,即所谓单点多方向喷射系统。它采用一个喷油器同时向各缸的进气歧管喷射,因此性能要比SPI强,成本比MPI要低。且发动机的质量轻,它的质量约为2公斤,比SPI的3.4公斤及
MPI的5公斤都要小的多。虽然排放性能比MPI差,但还是可以达到欧洲三号标准。目前正将该系统推广应用在小排量的3缸普及型轿车和微型车上。
近年来,高档豪华轿车有采用DI(Direct Injection)系统,即采用直喷系统的趋势。该系统最早由日本三菱公司研制开发,它是将喷油器安装在每个气缸的燃油室上方,燃油直接喷入气缸内进行混合燃烧,一般喷射系统的喷射压力为250千帕,而DI系统的喷射压力将达到5兆帕以上。由于压力增大,因而燃烧更充分,效率更高,可以节约燃料20%以上,并能满足2005年开始实施的欧洲4号排放规定。但是由于它必须使用低硫汽油,其目前的应用还受到一定限制,汽油直喷式发动机的开发成功为制造出更节能、更干净的汽车提供了良好的开端。缸内直喷特别是四冲程汽油机缸内直喷是当前轿车汽油喷射中的前沿技术,电控燃油直喷式发动机将成为21世纪汽车的主流。
二、电控燃油喷射系统的优缺点
汽油喷射系统的实质就是一种新型的汽油供油系统。化油器利用空气流动时在节气门上方的喉管处产生负压,将浮子室的汽油连续吸出,经过雾化后输送给发动机。汽油喷射系统则是通过采用大量的传感器感受各种工况,根据直接或间接检测的进气信号,经过计算机判断和分析,计算出燃烧时所需的汽油量,然后将加有一定压力的汽油经喷油器喷出,以供发动机使用。
电控发动机系统取消了化油器供油系中的喉管,喷油位置在节气门下方,直接在进气门附近或缸内,有计算机控制喷油器精确供油。与化油器式发动机相比,汽油喷射系统具有以下优点:
1、 提高了发动机的充气系数,从而增加了发动机的输出功率和扭矩。这是因为汽油喷射系统没有化油器的喉管,减少了进气压力的损失;汽油喷射是在进气歧管附近,只有空气通过歧管,这样可以增加进气歧管的直径,增加进气歧管的惯性作用,提高充气效率。 2、能根据发动机负荷的变化,精确控制混合气的空燃比,适应发动机的各种工况,使汽油燃烧充分,降低油耗,减少排气污染,而且响应速度快
3、可均匀分配各缸燃油,减少了爆震现象,提高了发动机工作的稳定性。同时,也降低了废气排放和嘈声污染。
4、提高了汽车驾驶性能。在寒冷的季节里,化油器主喷油管的附近容易结冰,会造成发动机输出功率不足,而汽油喷射供油不经过节气门和进气歧管,所以没有结冰现象,从而提高了冷起动性能;另外,汽油喷射是高压供油,喷出的汽油雾滴比较小,汽油不经过进气歧管,所以,当突然加速时,雾滴较小的汽油能与空气同时进入燃烧室混合,因而比化油器供油的响应速度快,加速性能好。
与传统的化油器相比,电控汽油系统可以使汽车燃油消耗率降低5%到15%,废气排放量减少20%左右,发动机功率提高5%到10%。电控汽油喷射系统无论从燃油经济性、发动机动力性,还是从排气和嘈声污染等方面,都具有化油器式发动机无法比拟的优越性。 电控汽油系统价的缺点在于价格偏高、维修要求高。 三、电控燃油喷射系统的类型 1、按喷射方式分类
图1 喷油器喷射顺序
a)同时喷射 b)分组喷射 c)顺序喷射
2、按喷射位置分类
图2缸内喷射
图3 进气管喷射
按汽油的喷射方式来分,电控汽油喷射系统 可以分为缸内喷射、进气管喷射两大类
(1)缸内喷射 该喷射方式是将喷油器安装在缸盖上直接向缸内喷油。因此,要求喷油器阀体能承受燃气产生的高温高压。另外发动机设 计时需保留喷油器发生的安全位置。缸内喷射是近几年来燃油喷射技术的发展趋势之一。 (2)进气管喷射 该喷射方式是目前普遍采用的喷射方式。根据喷油器和安装位置的不同又可分为两种
1)单点喷射方式:单点喷射系统(SPI-single point injection)是把喷油器安装在化油器所在的节气门段,它的外形也有一点象化油器,通常用一个喷油器将燃油喷入进气流,形成混合气进入进气歧管,在分配到各缸中。因此,单点喷射又可以 理解为把化油器换成节流阀体喷射装置(TBI),也称为中央燃油喷射(CFI)。单点喷射系统由于在气流的前段(节气门段)将燃油喷入气流,因此属于前段喷射。 2)多点喷射方式:多点喷射系统(MPI-multi point injection)是在每缸进气口处装有一个喷油器,由电控单元(ECU)控制进行分缸单独喷射或分组喷射,汽油直接喷射到各缸的进气门前方,再与空气一起进入气缸形成混合气。多点喷射又称为多气门喷射(MPI)或顺序燃油喷射(SFI),或单独燃油喷射(IFI)。由于多点喷射系统是直接向进气门前方喷射,因此,多点喷射属于在气流的后段将燃油喷入气流,属于后段喷射。多点喷射是目前最普遍的喷射系统。
图4 多点喷射和单点喷射示意图 a)多点喷射 b)单点喷射
1-汽油;2-空气;3-节气门;4-进气管;5-喷油器;6-燃油总管
图5 多点喷射系统喷油器安装位置
3、按对空气量的计量方式分类
按空气量的检测方式来分,电控汽油喷射系统可以分为直接式检测方式、间接式检测方式两大类。
(1)D型电控燃油喷射系统(间接式检测方式):“D”是德语Druck(压力)的第一个字母。D型电控燃油喷射系统利用绝对压力传感器检测进气管内的绝对压力,电脑根据进气管内的绝对压力和发动机转速推算出发动机的进气量,再根据进气量和发动机转速确定基本喷油量。
(2)L型电控燃油喷射系统(直接式检测方式):“L”是德语主Luft(空气)的第一个字母。L型电控燃油喷射系统利用空气流量计直接测量发动机的进气量,电脑不必进行推算,即可根据空气流量计信号计算与该空气量相应的喷油量。由于消除了推算进气量的误差影响,其测量的准确程度高于D型,故对混合气浓度的控制更精确。
图6 L型和D型EFI系统框图
4、按有无反馈信号分类:
电控燃油喷射系统按有无反馈信号可分为开环控制系统和闭环控制系统o
(1)开环控制系统(无氧传感器):它是将通过实验确定的发动机各工况的最佳供油参数 预先存入电脑,在发动机工作时。电脑根据系统中各传感器的输入信号,判断自身所处的运 行工况,并计算出最佳喷油量。通过对喷油器喷射时间的控制,来控制混合气的浓度,使发动机优化运行。
开环控制系统按预先设定在电脑中的控制规律工作,只受发动机运行工况参数变化的 控制,简单易行。但其精度直接依赖于听设定的基准数据和喷油器调整标定的精度。喷油器及发动机的产品性能存在差异,或由于磨损等引起性能参数变化时,就不能使混合气准确地保持在预定的浓度(空燃比)上。因此,开环控制系统对发动机及控制系统各组成部分的精度要求高,抗干扰能力差,当使用工况超出预定范围时,不能实现最佳控制。
(2)闭环控制系统(有氧传感器):在该系统中,发动机排气管上加装了氧传感器,根据排气中含氧量的变化,判断实际进入气缸的混合气空燃比,再通过电脑与设定的目标空燃比值进行比较,并根据误差修正喷油器喷油量,使空燃比保持在设定的目标值附近。
闭环控制系统可达到较高的空燃比控制精度,并可消除因产品差异和磨损等引起的性能 变化,工作稳定性好,抗干扰能力强:但是,为了使排气净化达到最佳效果,只能运行在理论空燃比14.7附近。对起动、暖机、加速、怠速、满负荷等特殊工况,仍需采用开环控制,使喷油器按预先设定的加浓混合气配比工作,以满足发动机特殊工况的工作要求。所以,目前普遍采用开环和闭环相结合的控制方案。
因篇幅问题不能全部显示,请点此查看更多更全内容