一、填空题。
1. 从直线外一点到这条直线可以画无数条线段,其中最短的是和这条直线( )的线段。
2. 下图中,∠1=( )度,∠2=( )度。
2301
3. 一个三角形中,最小的角是46°,按角分类,这个三角形是( )三角形。 4. 下图是三个半径相等的圆组成的图形,它有( )条对称轴。
5. 用百分数表示以下阴影部分是整个图形面积的百分之几。
6. 把一个底面直径2分米的圆柱体截去一个高1分米的圆柱体,原来的圆柱体表面积减少( )平方分米。
7. “”和“”的周长之比是( ),面积之比是( )。
8. 左图是由棱长1厘米的小正方体木块搭成的,这个几何体的表
面积是( )平方厘米。至少还需要( )块这样的小正方体才能搭成一个大正方体。
9. 画一个周长25.12厘米的圆,圆规两脚间的距离是( )厘米,画成的圆的面积是( )。
10. 下面的小方格边长为1厘米,估一估图①中“福娃”的面积,算一算图②中阴影部分的面积。
11. 一个梯形,上底长a厘米,下底长b厘米,高h厘米。它的面积是( )平方厘米。如果a=b,那么这个图形就是一个( )形。
12. 在一块边长是20厘米的正方形木板上锯下一个最大的圆,这个圆的面积是( )平方厘米,剩下的边料是( )平方厘米。
13. 将一个大正方体切成大小相同的8个小正方体,每个小正方体的表面积是18平方厘米,原正方体的表面积是( )平方厘米。
14. 5个棱长为30厘米的正方体木箱堆放在墙角(如下图),露在外面的表面积是( )平方厘米。
15. 如下左图,已知大正方形的边长是a厘米,小正方形的边长是b厘米。用字母表示阴影部分的面积是( )平方厘米。
16. (上右图)根据左图估计右图的面积是( )平方厘米。 二、选择题。
1. 小青坐在教室的第3行第4列,用(4,3)表示,小明坐在教室的第1行第3列应当表示为( )。
A. (1,3) B. (3,1) C. (1,1) D. (3,3) 2. 在同一平面内,画已知直线的垂线,可以画( )。
A. 1条 B. 4条 C. 2条 D. 无数条 3. 用100倍的放大镜看40°的角,这个角的度数是( )度。
A. 4 B. 40 C. 400 D. 4000 4. 下面图形是用木条钉成的支架,最不容易变形的是( )。
ABCD
5. 下列图形中,对称轴条数最多的是( )。
ABCD
6. 水桶占地面积是指水桶的( )。
A. 表面积 B. 体积 C. 容积 D. 底面积 7. 下列形体,截面形状不可能是长方形的是( )。
8. 一个用立方块搭成的立体图形,淘气从前面看到的图形是,从上面看是
,那么搭成这样一个立体图形最少要( )个小立方块。 A. 4 B. 5 C. 6 D. 7 9. 有两个大小不同的圆,直径都增加1厘米,则它们的周长( )。
A. 大圆增加得多 B. 小圆增加得多 C. 增加得一样多 10. 一个立方体木块,6个面都涂上红色,然后把它切成大小相等的27个小立方体,其中有三个面是红色的小立方体有( )个。
A. 4 B. 12 C. 6 D. 8
11. 左图最有可能是( )的展开示意图。
12. 有两盒滋补品,用下面三种方式包装,你认为最省包装纸的是( )。
13. 甲图和乙图所占空间的大小关系是甲( )乙。
14. 下图中甲和乙周长相比,结果是( ),面积相比,结果是( )。
A. 甲比乙大 B. 甲比乙小 C. 甲和乙一样大 D. 无法比较 三、判断题。
1. 一条射线长12米。 ( ) 2.两条直线相交,一定有两个交点。 ( ) 3.小于180°的角是钝角。 ( ) 4.角的两条边画得越短,这个角就越小。 ( ) 5.用一副三角板可以拼成105°的角。 ( )
6.用8个小正方体拼成一个大正方体,任意拿走一个小正方体后表面积一定会减少。 ( )
7.任何一个长方体都有8个面,12条棱,6个顶点。 ( ) 8.只要有一个角是直角的平行四边形,就是长方形或正方形。 ( ) 9.以圆规两脚间的距离为4厘米画一个圆,这个圆的半径是2厘米。( ) 10.把一个长方形拉成一个平行四边形后,保持不变的是面积。 ( ) 11.半圆的周长就是圆的周长的一半。 ( )
12.一个正方形的边长与一个圆的直径相等,那么这个正方形的周长一定大于圆的周长。 ( )
13.棱长6厘米的正方体,表面积和体积相等。 ( )
四、操作题。
1.在方格纸上按以下要求画出图形B和图形C。
(1)以直线MN为对称轴画图图形A的对称图形B。
(2)将图形B向右平移4格,再以O点为中心,顺时针旋转90°得到图形C。(甘肃兰州市城关区)
2.画出下面图形的全部对称轴。(江苏南京师大附小)
3.在方格纸上分别画出从正面、左面和上面看到的图形。(湖南长沙市)
4.画两个圆,使它们的面积的比是1:4,并且使它们组成的图形有无数条对称轴。(福建沙县)
5.根据图中的信息解答下列问题:
(1)车站到学校的路线与游乐园到学校的路线的夹角的度数是( )。
(2)电影院距离学校有500米,位置刚好在学校的东偏北方向,并且路线与学校到车站的路线垂直,则学校到电影院的图上距离是多少厘米?请你在图中画出学校到电影院的路线,并标上电影院的位置。
(3)根据图上的距离,求出学校到车站的实际距离是多少米。(浙江临海市)
6.在生产、生活中,我们经常把一些同样大小的圆柱捆扎起来,下面我们来探索捆扎时怎样求绳子的长度。假设每个圆柱管的直径都是10厘米,当圆柱管的放置方式是“单层平放”时,捆扎后的横截面如下图所示:
请你根据图形,完成下表:
圆柱管个数绳子长度(厘米)123......100
五、周长、面积计算题。
1.下图中阴影部分的周长是多少?
2.光明小区要将一块四边形闲置地(如下图,单位:米)改建为小区花园。请你帮忙算一算:这块闲置地的面积是多少?
3.已知阴影部分的面积是8平方厘米,求圆的面积。
4.如下图(单位:米),阴影部分的面积分别是S1和S2,S1与S2的比为1:4,求S1、S2。
5.下图中,正方形的边长是2厘米,四个圆的半径都是1厘米,圆心分别是正方形的四个顶点。求出阴影部分的面积。
6.给水缸做一个圆形木盖,木盖面的直径是0.8米。木盖面的面积是多少平方米?如果沿木盖的外沿钉一条铁片,铁片至少长多少厘米?
7.刘老师从家到学校的路程是3000米,早上7:30他骑自行车从家去学校上班,这辆自行车轮子的外直径是70厘米,平均每分钟转100圈,如果学校8:00上课,刘老师会不会迟到?你是怎样想的?
六、表面积、体积计算题。
1.母亲节时,小明送妈妈一个茶杯。(如下图,单位:厘米)
(1)茶杯中部的一圈装饰带很漂亮,那是小明怕烫伤妈妈的手特意贴上的,这条装饰带宽5厘米,装饰带展开后至少长多少厘米?(接头处忽略不计)
(2)这只茶杯的体积是多少?
2.某工厂要生产100节圆柱形铁皮通风管,已知每节通风管的管口半径是0.2米,长是1.4米。生产这批圆柱形通风管,至少需要铁皮多少平方米?(通风管的接口、损耗料忽略不计,得数保留整数)
3.把一个棱长是0.5米的正方体钢坯,锻成横截面面积是10平方分米的长方体钢材。锻成的钢材有多长?(用方程解答)
4.红星村在空地上挖一个直径是4米,深3米的圆柱形氨水池。 (1)如果要在池壁和池底抹上水泥,抹水泥的面积是多少平方米?
(2)这个水池能储存多少立方米的氨水?
5.有一个圆锥形帐篷,底面直径约5米,高约3.6米
(1)它的占地面积约是多少平方米?
(2)它的体积约是多少立方米?
七、能力拓展题。
1.求下图正方形内阴影部分的面积。(正方形边长是4厘米)
2.长方形ABCD被虚线分割成4个面积相等的部分(如下图,单位:厘米)。试求线段BE的长度。
3.图中四个等圆的周长都是50.24厘米,求阴影部分的面积。
4.下图由19个棱长是2厘米的小正方体重叠而成。求这个立体图形的表面积。
5.一只猫追赶一只老鼠,老鼠沿A B C方向跑,猫沿A D C方向跑,结果在E点将老鼠抓住了。老鼠与猫的速度比是17:20,C点与E点相距3米,四边形ABCD为平行四边形。猫和老鼠所用的时间相等。
(1)猫比老鼠多跑了几米才追到老鼠?
(2)猫和老鼠所跑的四边形的周长是多少米?
因篇幅问题不能全部显示,请点此查看更多更全内容