教学内容:
本次教学将着重讲解教科书第50、51页的内容,同时练习十一中的第4-6题。
教学目标:
1、掌握比的基本性质,能够根据比的基本性质简化比的表达式。
2、将商不变性质和分数的基本性质应用到比的基本性质中。
教学重点:
理解比的基本性质。
教学难点:
应用比的基本性质简化比的表达式。
教学过程:
一、引入
1、求解20÷5,可以得到20÷5 = (20×10) ÷ (5×10) = 4,请问大家如何求解这个题目。
2、商不变性质和分数的基本性质,大家是否都掌握了?
3、在比中有哪些规律呢?本节课程将为大家介绍比的基本性质。
二、自学互动
[活动一]比的基本性质
学习方式:小组合作、展示汇报
学习任务:
1、完成以下问题:6:8和12:16这两个比虽然不同,但是它们的比值却相同,其中存在什么样的规律?
6:8=6÷8=6/8=3/4,12:16=12÷16=12/16=3/4
2、观察比较并发现规律。
(1)利用比和除法的关系来研究比中的规律。(商不变的规律)
(2)利用比和分数的关系来研究比中的规律。
3、归纳总结,概括规律。
(1) 总结:
比的前项和后项同时乘或除以相同的`数(0除外),比值不变,这叫做比的基本性质。
(2)追问:这里“相同的数”为什么要强调0除外呢?
[活动二]化简比
学习方式:尝试训练、汇报交流
学习任务:
1、互动交流:最简整数比的定义是什么?
2、在编辑中使用比的基本性质,将已知比化简为最简整数比。
3、将化简的结果进行总结,概括规律。
1.最简单的整数比
最简单的整数比要满足两个条件:一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1。
下面列出几个最简单的整数比:
1:1 2:1 3:1 1:2 1:3 2:3
2.化简比的方法
(1)分别写出这两面联合国国旗长和宽的比。
(2)这两个比并不是最简单的整数比,因为它们的前项和后项除了公因数1之外还有其他的公因数。
(3)可以尝试将这两个比化简,即把比的前、后项除以它们的公因数。
(4)化简后的结果相同,说明这两面旗的形状相同,大小不同。
(5)运用以下方法化简比:
如果一个比的前、后项是分数的,就把前后项同时乘分母的最小公倍数;如果一个比的前、后项是小数的,先把它们都化成整数,再化简。
(6)示例题:
1/6:2/9 = (1/6×18):(2/9×18) = 3:4 0.75:2 = (0.75×100):(2×100) = 75:200 = 3:8 1/6÷2/9 = 1/6×2/9 = 3/4
3.达标测评
1.完成课本第51页的“做一做”,集体订正。
2.完成课本第52页练习十一的第2、4、5、6题。
4.课堂小结
今天我们学习了最简单的整数比和化简比的方法,通过示例题的实际操作,加深了对化简比的理解和掌握。希望大家能够在以后的学习和生活中灵活应用这些知识,解决各种比的问题。
因篇幅问题不能全部显示,请点此查看更多更全内容