您的当前位置:首页正文

人工智能论文

2022-11-19 来源:小奈知识网


人工智能论文

0803030106

杨杰

人工智能的研究领域及应用

人工智能的研究领域分支较多,从研究角度来分有三大分支:知识工程、模式识别与机器人学。这里仅择其中几种研究领域进行粗略的介绍。

专家系统

1977 年费根鲍姆提出“知识工程”,把实用的人工智能称为知识工程,标志着人工智能研究进入实际应用的阶段。他开发出了第一个“专家系统”(expert systems),认为“专家系统是一种智能的计算机程序,它运用知识和推理步骤来解决只有专家才能解决的复杂问题”。专家系统是指利用研究领域的专业知 识进行推论,在解决专业的高级问题方面具有和专家相同能力的解决系统,属于人工智能的应用领域。目前,这一领域发展较快,应用也较广,已开发出不少有实际 价值的专家系统.

与传统的计算机程序相比,专家系统是以知识为中心,注重知识本身而不是确定的算法.专家系统所要解决的是复杂而专门的问题,对这些问题人们还没有精确的描述和严格的分析,因而一般没有解法,而且经常要在不确定或不精确的信息基础上做出判断,需要专家的理论知识和实际经验。标准的计算机程序能精确地区分出每一 任务应该如何完成,而专家系统则是告诉计算机做什么,而不区分出如何完成,这是两者最大的区别。另外,专家系统突出了知识的价值,大大减少了知识传授和应用的代价,使专家的知识迅速变成社会的财富。再者,专家系统采用的是人工智能的原理和技术,如符号表示、符号推理、启发式搜索等等,与一般的数据处理系统不同。

从不同角度,专家系统可分为多种类型。从其完成的功能来分,可包括诊断、解释、修理、规划、设计、监督、控制等多种类型,这些功能又可分为两大类:分析型 和综合型。分析型专家系统所要解决的问题有明确的、有限个数的解,系统的任务在于根据实际的情况选择其中一种或几种解。综合型专家系统的任务是根据实际的 需要构造问题的解,包括设计、规划等问题。此外,也可根据知识的特征和推理的类型对专家系统进行分类。

专家系统在各个领域的应用已经产生了很可观的经济效益,这从另一方面促进了对专家系统的理论和技术方面的研究。

自然语言处理

自然语言处理是人工智能早期的研究领域之一,也是一个极为重要的领域,主要包括人机对话和机器翻译两大任务,是一门融语言学、计算机科学、数学于一体的科学。由于以乔姆斯基为代表的新一代语言学派的贡献和计算机技术的发展,自然语言理解正在变得越来越热门。有很多理由值得人们去研究如何使计算机程序能以某种方式使用自然语言的问题。口语是人们进行交际的自然形式,计算机用户希望能与机器对话交流。自然语言输入可以表示成口语,也能从键盘上打入,以文体的形式给出。

从20 世纪70年代末期,随着机器翻译理论和计算机技术的进步,机器翻译有很大的进展。一种常见的做法是将语言的翻译分为“原语言的理解”和“所理解的语言表达成目的语言”两个子过程。这样就需要—种中间语言,只要做好原语言到中间语言以及中间语言到目的语言的转换程序,就可完成翻译。这种办法还容易实现—种语言到多种语言的翻译系统。1995年,松下公司试制成功一种可进行日英文对译的可视电话,引起了人们的广泛兴趣。该系统由计算机语音识别、声音合成和可视电话通信三个子系统组成,使用者可以用各自的语言进行交谈,通过分析语音波形的变化,该系统可从3000个例句中选择出语意最接近的单词,其识别率达到 98%。据称,只要备有专用词典,就可以用它来流利地进行会话。总之,要真正建立 一个能够生成和理解自然语言的计算机处理系统是相当困难的。因为,语言的生成和理解是一个极为复杂的编码和解码过程,一个能理解用自然语言来表达信息的计算机系绕,就应像人那样,不仅需要掌握上下文知识和语境等有关信息,而且还要能够利用这些知识进行推理,人具备大量的经验以及拥有自己的观点和对世界的看法,而现在的机器还做不到这一点。机器翻译离达到“自然的理解和表达”这个最终目标还有相当大的距离。 目前所能做到的仍然是人工辅助型的翻译系统,即靠人对翻译的结果进行修正,来获得自然的翻译。

推理

人类智力的优越性表现在人能思维、判断和决策。思维是人类在感性认识的基础上形成的理性认识,是通过分析和综合过程来实现的,而人类思维中的分析综合过程则 产生了质变,在一般的分析和综合基础上,产生了抽象和概括,比

较和分类、系统化和具体化等一系列新的、高级的、复杂的思维能力,在头脑中运用概念作出判断 和推理。要使机器具有智能,就必须使其具有推理的功能。推理是由一个或几个判断推出另一个判断的一种思维形式,也即从已有事实推出新的事实的过程。在形式逻辑中,推理由前提(已知判断)、结论(被推出的判断)和推理形式(前提和结论之间的联系方式)组成。

人类之所以能高效率地解决一些复杂的问题,这除了拥有大量的专门知识外,还由于人具有合理选择知识和运用知识的能力,也即推理能力和推理策略。以符号逻辑为基础的人工智能,是以逻辑思维和推理为主要内容的。传统的形式化推理技术,是以经典的谓词逻辑也即演绎推理为基础,广泛应用于早期的问题求解和定理证明中,但随着人工智能研究的不断深入,人们在研究中碰到的许多复杂问题不能用严格的演绎推理来解决,因而对非单调逻辑推理等方式的研究正迅速发展起来,已成为人工智能的重要研究内容之一。

感知问题

感知问题是人工智能的一个经典研究课题,涉及神经生理学、视觉心理学、物理学、化学等学科领域,具体包括计算机视觉和声音处理等。感知问题的关键是必须把数量巨大的感知数据以一种易于处理的精练的方式,进行简练、有效的表征和描述。

对计算机视觉做出卓越贡献的是马尔(D. Marr)教授,他认为视觉是一个复杂的信息处理过程,并有不同的信息表达方式和不同层次的处理过程,而最终的目的是实现计算机对外部世界的描述。由此, 他提出了三十层次的研究方法,包括计算理论、算法和硬件实现。他的理论奠定了计算机视觉研究的理论基础,并明确指出了研究内容和研究目标.目前,计算机视觉已在图像处理、立体与运动视觉、三维物体建模和识别等方面取得了很大的进展,但离建构一个实用的计算机视觉系统还有很大的距离。

在2002年岁末,有关“智能人机交互”领域的重要研究内容之一“面像识别技术”在我国取得了突破性进展,其稳定性、识别率等都达到了国际先进水平,初步达到了实用阶段。面像识别技术使计算机“人性化”、“智能化”的水平大大提高。

机器学习

学习能力无疑是人工智能研究领域最突出和最重要的一个方面。学习是人类智能的主要标志和获得知识的基本手段。机器学习是使计算机具有智能的根本途径。正如香克所说:“一台计算机若不会学习,就不能称为具有智能的。”此外,机器学习还有助于发现人类学习的机理和揭示人脑的奥秘。所以这是一个始终得到重视,理论正在创立,方法日臻完善但远未达到理想境地的研究领域。

机器人学

机器人和机器人学是人工智能研究的另一个重要的应用领域,促进了许多人工智能思想的发展,由它衍生而来的一些技术可用来模拟现实世界的状态,描述从一种状态到另一种状态的变化过程,而且对于规划如何产生动作序列以及监督规划执行提供了较好的帮助。

机器人的应用范围越来越广,已开始走向第三产业,如商业中心、办公室自动化等。目前机器人学的研究方向主要是研制智能机器人。智能机器人将极大地扩展机器人应用领域。智能机器人本身能够认识工作环境、工作对象及其状态,根据人给予的指令和自身的知识,独立决定工作方式,由操作机构和移动机构实现任务,并能适应工作环境的变化。智能机器人只要告诉它做什么,而不用告诉怎么做。它共有四种基本功能,分别是:(1)运动功能,类似于人的手、臂和腿的基本功能,对外界环境施加作用。(2)感知功能,获取外界信息的功能。(3)思维功能,求解问题的认识、判断、推理的功能。 (4)人机通信功能,理解指示,输出内部状态,与人进行信息交流的功能。智能机器人是以一种“认知——适应”方式进行操作的。

今天,在仿真人各种外在功能的各个方面,机器人的设计都有很大的进展。现在有一些科学家在研究如何从生物工程的角度去研制高逼真度的仿真机器人。目前的机器人离人们心目中的能够做各种家务活,任劳任怨,并会揣摩主人心思的所谓“机器仆人”的目标还相去甚远。因为机器人所表现的智能行为都是由人预先编好的程序决定的,机器人只会做人要他做的事。人的创造性、意念、联想、随机应变乃至当机立断等都难以在机器人身上体现出来。要想使机器人融入人类的生活,看来还是比较遥远的事情。

因篇幅问题不能全部显示,请点此查看更多更全内容