您的当前位置:首页正文

TPA321D,TPA321DGN,TPA321DR,TPA321DRG4,TPA321DGNR,TPA321DGNRG4,TPA321DGNG4, 规格书,Datasheet 资料

2020-01-09 来源:小奈知识网
TPA321

www.ti.comSLOS312C–JUNE2000–REVISEDJUNE2004350-mWMONOAUDIOPOWERAMPLIFIERWITHDIFFERENTIALINPUTS

•••

FullySpecifiedfor3.3-Vand5-VOperationWidePowerSupplyCompatibility2.5V–5.5V

OutputPowerforRL=8Ω–350mWatVDD=5V–250mWatVDD=3.3V

UltralowSupplyCurrentinShutdownMode...0.15µA

ThermalandShort-CircuitProtectionSurface-MountPackaging–SOIC

–PowerPAD™MSOP

D OR DGN PACKAGE

(TOP VIEW)

•••

SHUTDOWNBYPASSIN+IN-12348765VO-GNDVDDVO+

DESCRIPTION

TheTPA321isabridge-tiedload(BTL)audiopoweramplifierdevelopedespeciallyforlow-voltageapplicationswhereinternalspeakersarerequired.Operatingwitha3.3-Vsupply,theTPA321candeliver250mWofcontinuouspowerintoaBTL8-Ωloadatlessthan1%THD+Nthroughoutvoicebandfrequencies.Althoughthisdeviceischaracterizedoutto20kHz,itsoperationwasoptimizedfornarrowerbandapplicationssuchascellularcommunications.TheBTLconfigurationeliminatestheneedforexternalcouplingcapacitorsontheoutputinmostapplications,whichisparticularlyimportantforsmallbattery-poweredequipment.Thisdevicefeaturesashutdownmodeforpower-sensitiveapplicationswithaquiescentcurrentof0.15µAduringshutdown.TheTPA321isavailableinan8-pinSOICsurface-mountpackageandthesurface-mountPowerPAD™MSOP,whichreducesboardspaceby50%andheightby40%.

VDD6RFAudio InputVDD/2RICI43IN-IN+VO+5CS1 µFVDD

-+2CB0.1 µFBYPASS-+VO-87350 mWGNDFrom System Control1SHUTDOWNBiasControlPleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsofTexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet.

PowerPADisatrademarkofTexasInstruments.

PRODUCTIONDATAinformationiscurrentasofpublicationdate.ProductsconformtospecificationsperthetermsoftheTexasInstrumentsstandardwarranty.Productionprocessingdoesnotnecessarilyincludetestingofallparameters.

Copyright©2000–2004,TexasInstrumentsIncorporated

芯天下--http://oneic.com/

www.ti.com

ThisintegratedcircuitcanbedamagedbyESD.TexasInstrumentsrecommendsthatallintegratedcircuitsbehandledwithappropriateprecautions.Failuretoobserveproperhandlingandinstallationprocedurescancausedamage.

ESDdamagecanrangefromsubtleperformancedegradationtocompletedevicefailure.Precisionintegratedcircuitsmaybemoresusceptibletodamagebecauseverysmallparametricchangescouldcausethedevicenottomeetitspublishedspecifications.

AVAILABLEOPTIONS

TA–40°Cto85°C(1)

PACKAGEDDEVICESSMALLOUTLINE(1)(D)TPA321DMSOP(1)(DGN)TPA321DGNMSOPSYMBOLIZATIONAJBTheDandDGNpackagesareavailabletapedandreeled.Toorderatapedandreeledpart,addthesuffixRtothepartnumber(e.g.,TPA321DR).

overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1)

UNITVDDVITATJTstg(1)

SupplyvoltageInputvoltageContinuoustotalpowerdissipationOperatingfree-airtemperaturerangeOperatingjunctiontemperaturerangeStoragetemperaturerangeLeadtemperature1,6mm(1/16inch)fromcasefor10seconds6V–0.3VtoVDD+0.3VInternallylimited(seeDissipationRatingTable)–40°Cto85°C–40°Cto150°C–65°Cto150°C260°CStressesbeyondthoselistedunder\"absolutemaximumratings\"maycausepermanentdamagetothedevice.Thesearestressratingsonly,andfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunder\"recommendedoperatingconditions\"isnotimplied.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability.

PACKAGEDDGN(1)

TA≤25°C725mW2.14W(1)DERATINGFACTOR5.8mW/°C17.1mW/°CTA=70°C464mW1.37WTA=85°C377mW1.11WSeetheTexasInstrumentsdocument,PowerPADThermallyEnhancedPackageApplicationReport(literaturenumberSLMA002),formoreinformationonthePowerPAD™package.ThethermaldatawasmeasuredonaPCBlayoutbasedontheinformationinthesectionentitledTexasInstrumentsRecommendedBoardforPowerPADonpage33ofthebeforementioneddocument.

MINVDDVIHVILTASupplyvoltageHigh-levelvoltageLow-levelvoltageSHUTDOWNSHUTDOWN–402.50.9VDDMAX5.50.1VDD85UNITVVV°COperatingfree-airtemperature2

芯天下--http://oneic.com/

TPA321

www.ti.com

SLOS312C–JUNE2000–REVISEDJUNE2004

ELECTRICALCHARACTERISTICS

atspecifiedfree-airtemperature,VDD=3.3V,TA=25°C(unlessotherwisenoted)

PARAMETER|VOO|PSRRIDDIDD(SD)|IIH||IIL|Outputoffsetvoltage(measureddifferentially)PowersupplyrejectionratioSupplycurrent(seeFigure3)Supplycurrent,shutdownmode(seeFigure4)High-levelinputcurrentLow-levelinputcurrentTESTCONDITIONSSHUTDOWN=0V,RL=8Ω,RF=10kΩVDD=3.2Vto3.4VSHUTDOWN=0V,RF=10kΩSHUTDOWN=VDD,RF=10kΩSHUTDOWN,VDD=3.3V,VI=3.3VSHUTDOWN,VDD=3.3V,VI=0VMINTYPMAX5850.70.151.551120UNITmVdBmAµAµAµAOPERATINGCHARACTERISTICS

VDD=3.3V,TA=25°C,RL=8Ω

PARAMETERPOTHD+NOutputpower(1)TotalharmonicdistortionplusnoiseMaximumoutputpowerbandwidthB1Unity-gainbandwidthSupplyripplerejectionratioVn(1)

NoiseoutputvoltageTHD=0.5%,PO=250mW,AV=-2V/V,Openloop,AV=–1V/V,RL=32Ω,TESTCONDITIONSSeeFigure9f=20Hzto4kHz,SeeFigure7SeeFigure15CB=0.1µF,SeeFigure19MINTYPMAX2501.3%101.47115kHzMHzdBµV(rms)UNITmWAV=-2V/V,THD=3%,SeeFigure7f=1kHz,CB=1µF,SeeFigure2Outputpowerismeasuredattheoutputterminalsofthedeviceatf=1kHz.

ELECTRICALCHARACTERISTICS

atspecifiedfree-airtemperature,VDD=5V,TA=25°C(unlessotherwisenoted)

PARAMETER|VOO|PSRRIDDIDD(SD)|IIH||IIL|Outputoffsetvoltage(measureddifferentially)PowersupplyrejectionratioSupplycurrent(seeFigure3)Supplycurrent,shutdownmode(seeFigure4)High-levelinputcurrentLow-levelinputcurrentTESTCONDITIONSSHUTDOWN=0V,RL=8Ω,RF=10kΩVDD=4.9Vto5.1VSHUTDOWN=0V,RF=10kΩSHUTDOWN=VDD,RF=10kΩSHUTDOWN,VDD=5.5V,VI=VDDSHUTDOWN,VDD=5.5V,VI=0VMINTYPMAX5780.70.151.551120UNITmVdBmAµAµAµAOPERATINGCHARACTERISTICS

VDD=5V,TA=25°C,RL=8Ω

PARAMETERPOTHD+NOutputpowerTotalharmonicdistortionplusnoiseMaximumoutputpowerbandwidthB1Unity-gainbandwidthSupplyripplerejectionratioVnNoiseoutputvoltageTHD=0.5%,PO=350mW,AV=–2V/V,Openloop,AV=-1V/V,RL=32Ω,TESTCONDITIONSSeeFigure13f=20Hzto4kHz,SeeFigure11SeeFigure16CB=0.1µF,SeeFigure20MINTYPMAX7001%101.46515kHzMHzdBµV(rms)UNITmWAV=–2V/V,THD=2%,SeeFigure11f=1kHz,CB=1µF,SeeFigure23

芯天下--http://oneic.com/

TPA321

SLOS312C–JUNE2000–REVISEDJUNE2004

www.ti.com

TerminalFunctions

TERMINALNAMEBYPASSGNDIN-IN+SHUTDOWNVDDVO+VO-NO.27431658OOIIII/OIDESCRIPTIONBYPASSisthetaptothevoltagedividerforinternalmid-supplybias.Thisterminalshouldbeconnectedtoa0.1-µFto1-µFcapacitorwhenusedasanaudioamplifier.GNDisthegroundconnection.IN-istheinvertinginput.IN-istypicallyusedastheaudioinputterminal.IN+isthenoninvertinginput.IN+istypicallytiedtotheBYPASSterminalforSEoperations.SHUTDOWNplacestheentiredeviceinshutdownmodewhenheldhigh(IDD~0.15µA).VDDisthesupplyvoltageterminal.VO+isthepositiveBTLoutput.VO-isthenegativeBTLoutput.PARAMETERMEASUREMENTINFORMATION

VDD6RFAudio InputRICIVDD/243IN-IN+VO+5CS1 µFVDD

-+2CB0.1 µFBYPASSRL = 8 Ω-+VO-87GND1SHUTDOWNBiasControlFigure1.TestCircuit

4

芯天下--http://oneic.com/

TPA321

www.ti.com

SLOS312C–JUNE2000–REVISEDJUNE2004

TYPICALCHARACTERISTICS

TableofGraphs

FIGUREkSVRIDDPOTHD+NSupplyvoltagerejectionratioSupplycurrentOutputpowerTotalharmonicdistortionplusnoiseOpen-loopgainandphaseClosed-loopgainandphaseVnPDOutputnoisevoltagePowerdissipationvsFrequencyvsSupplyvoltagevsSupplyvoltagevsLoadresistancevsFrequencyvsOutputpowervsFrequencyvsFrequencyvsFrequencyvsOutputpower23,4567,8,11,129,10,13,1415,1617,1819,2021,22SUPPLYVOLTAGEREJECTIONRATIO

vs

FREQUENCY

0kSVR− Supply Voltage Rejection Ratio − dB−10−20−30−40−50−60−70−80−90−100201001 kf − Frequency − Hz

10 k20 k−0.123VDD = 3.3 VVDD = 5 VRL = 8 ΩCB = 1 µF0.9IDD− Supply Current − mA1.1SUPPLYCURRENT

vs

SUPPLYVOLTAGE

SHUTDOWN = 0 VRF = 10 kΩ0.70.50.30.1456VDD − Supply Voltage − V

Figure2.Figure3.

5

芯天下--http://oneic.com/

TPA321

SLOS312C–JUNE2000–REVISEDJUNE2004

www.ti.com

SUPPLYCURRENT(SHUTDOWN)

vs

SUPPLYVOLTAGE0.50.45IDD(SD)− Supply Current − µA0.40.350.30.250.20.150.10.05SHUTDOWN = VDDRF = 10 kΩ22.533.544.555.5VDD − Supply Voltage − V

Figure4.

OUTPUTPOWER

vs

SUPPLYVOLTAGE1000THD+N 1%800PO− Output Power − mW600RL = 8 Ω400RL = 32 Ω200022.533.544.555.5VDD − Supply Voltage − V

Figure5.

6

芯天下--http://oneic.com/

TPA321

www.ti.com

SLOS312C–JUNE2000–REVISEDJUNE2004

OUTPUTPOWER

vs

LOADRESISTANCE800THD+N = 1%700PO− Output Power − mW600VDD = 5 V5004003002001000VDD = 3.3 V816243240485664RL − Load Resistance − Ω

Figure6.

TOTALHARMONICDISTORTION+NOISE

vs

FREQUENCY

10THD+N −Total Harmonic Distortion + Noise − %AV = −20 V/VTHD+N −Total Harmonic Distortion + Noise − %VDD = 3.3 VPO = 250 mWRL = 8 Ω10TOTALHARMONICDISTORTION+NOISE

vs

FREQUENCY

VDD = 3.3 VRL = 8 ΩAV = −2 V/VPO = 50 mW11AV =− 10 V/VAV = −2 V/V0.1PO = 125 mW0.10.01201001kf − Frequency − Hz

10k20k0.0120PO = 250 mW1001kf − Frequency − Hz

10k20kFigure7.Figure8.

7

芯天下--http://oneic.com/

TPA321

SLOS312C–JUNE2000–REVISEDJUNE2004

www.ti.com

TOTALHARMONICDISTORTION+NOISE

vs

OUTPUTPOWER

10THD+N −Total Harmonic Distortion + Noise − %VDD = 3.3 Vf = 1 kHzAV = −2 V/V1THD+N −Total Harmonic Distortion + Noise − %10TOTALHARMONICDISTORTION+NOISE

vs

OUTPUTPOWER

f = 20 kHzf = 10 kHz1f = 1 kHzRL = 8 Ω0.10.1f = 20 HzVDD = 3.3 VRL = 8 ΩAV = −2 V/V0.1PO − Output Power − W

10.010.040.10.160.220.280.340.40.010.01PO − Output Power − W

Figure9.

TOTALHARMONICDISTORTION+NOISE

vs

FREQUENCY

10THD+N −Total Harmonic Distortion + Noise − %AV = −20 V/VTHD+N −Total Harmonic Distortion + Noise − %VDD = 5 VPO = 350 mWRL = 8 Ω10VDD = 5 VRL = 8 ΩAV = −2 V/VFigure10.

TOTALHARMONICDISTORTION+NOISE

vs

FREQUENCY

PO = 50 mW11AV =− 10 V/V0.1AV = −2 V/VPO = 175 mW0.1PO = 350 mW0.01201001kf − Frequency − Hz

10k20k0.01201001kf − Frequency − Hz

10k20kFigure11.Figure12.

8

芯天下--http://oneic.com/

TPA321

www.ti.com

SLOS312C–JUNE2000–REVISEDJUNE2004

TOTALHARMONICDISTORTION+NOISE

vs

OUTPUTPOWER

10THD+N −Total Harmonic Distortion + Noise − %VDD = 5 Vf = 1 kHzAV = −2 V/V1RL = 8 ΩTHD+N −Total Harmonic Distortion + Noise − %10TOTALHARMONICDISTORTION+NOISE

vs

OUTPUTPOWER

f = 20 kHzf = 10 kHz1f = 1 kHz0.10.1f = 20 HzVDD = 5 VRL = 8 ΩAV = −2 V/V0.010.10.250.400.550.700.8510.010.010.1PO − Output Power − W

1PO − Output Power − W

Figure13.

OPEN-LOOPGAINANDPHASE

vs

FREQUENCY

Phase30GainOpen-Loop Gain − dB2060

100

0−10−20−301−60

VDD = 3.3 VRL = Open180

Figure14.

40120

−120

101102f − Frequency − kHz

103104−180

Figure15.

Phase −°9

芯天下--http://oneic.com/

TPA321

SLOS312C–JUNE2000–REVISEDJUNE2004

www.ti.com

4030OPEN-LOOPGAINANDPHASE

vs

FREQUENCY

PhaseGainVDD = 5 VRL = Open180

120

Open-Loop Gain − dB2060

100

0−10−20−301−60

Phase −°Phase −°−120

101102f − Frequency − kHz

103104−180

Figure16.

CLOSED-LOOPGAINANDPHASE

vs

FREQUENCY10.750.5Closed-Loop Gain − dB0.250−0.25−0.5−0.75−1−1.25−1.5−1.75−2101VDD = 3.3 VRL = 8 ΩPO = 0.25 WCI =1 µF102103104105106140

Gain150160

Phase170180

130

120

f − Frequency − Hz

Figure17.

10

芯天下--http://oneic.com/

TPA321

www.ti.com

SLOS312C–JUNE2000–REVISEDJUNE2004

CLOSED-LOOPGAINANDPHASE

vs

FREQUENCY10.750.5Closed-Loop Gain − dB0.250−0.25−0.5−0.75−1−1.25−1.5−1.75−2101VDD = 5 VRL = 8 ΩPO = 0.35 WCI =1 µF102103104105140

Gain150

Phase −°VO BTLVO+1 kf − Frequency − Hz160

Phase170180

130

120106f − Frequency − Hz

Figure18.

OUTPUTNOISEVOLTAGE

vs

FREQUENCY

100Vn− Output Noise Voltage −µV(rms)VDD = 3.3 VBW = 22 Hz to 22 kHzRL = 32 ΩCB =0.1 µFAV = −1 V/VVO BTL100Vn− Output Noise Voltage −µV(rms)OUTPUTNOISEVOLTAGE

vs

FREQUENCY

VDD = 5 VBW = 22 Hz to 22 kHzRL = 32 ΩCB =0.1 µFAV = −1 V/V10VO+101201001 kf − Frequency − Hz

10 k20 k12010010 k20 kFigure19.Figure20.

11

芯天下--http://oneic.com/

TPA321

SLOS312C–JUNE2000–REVISEDJUNE2004

www.ti.com

POWERDISSIPATION

vs

OUTPUTPOWER

300270PD− Power Dissipation − mW24021018015012090VDD = 3.3 VRL = 8 ΩPD− Power Dissipation − mW720640560480400320240160POWERDISSIPATION

vs

OUTPUTPOWER

VDD = 5 VRL = 8 Ω0200400600800100012000100200300400PO − Output Power − mWPO − Output Power − mW

Figure21.Figure22.

12

芯天下--http://oneic.com/

TPA321

www.ti.com

SLOS312C–JUNE2000–REVISEDJUNE2004

APPLICATIONINFORMATION

BRIDGE-TIEDLOAD

Figure23showsalinearaudiopoweramplifier(APA)inaBTLconfiguration.TheTPA321BTLamplifierconsistsoftwolinearamplifiersdrivingbothendsoftheload.Thereareseveralpotentialbenefitstothisdifferentialdriveconfigurationbutpowertotheloadshouldbeinitiallyconsidered.Thedifferentialdrivetothespeakermeansthatasonesideisslewingup,theothersideisslewingdown,andviceversa.This,ineffect,doublesthevoltageswingontheloadascomparedtoaground-referencedload.Plugging2×VO(PP)intothepowerequation,wherevoltageissquared,yields4×theoutputpowerfromthesamesupplyrailandloadimpedance(seeEquation1).

VO(PP)

V(RMS)+

2Ǹ2

Power+

V(RMS)RL

VDD2

(1)

VO(PP)

RLVDD2x VO(PP)

-VO(PP)

Figure23.Bridge-TiedLoadConfiguration

Inatypicalportablehandheldequipmentsoundchanneloperatingat3.3V,bridgingraisesthepowerintoan8-Ωspeakerfromasingle-ended(SE,groundreference)limitof62.5mWto250mW.Insoundpowerthatisa6-dBimprovement,whichisloudnessthatcanbeheard.Inadditiontoincreasedpower,therearefrequencyresponseconcerns.Considerthesingle-supplySEconfigurationshowninFigure24.Acouplingcapacitorisrequiredtoblockthedcoffsetvoltagefromreachingtheload.Thesecapacitorscanbequitelarge(approximately33µFto1000µF)sotheytendtobeexpensive,heavy,occupyvaluablePCBarea,andhavetheadditionaldrawbackoflimitinglow-frequencyperformanceofthesystem.ThisfrequencylimitingeffectisduetothehighpassfilternetworkcreatedwiththespeakerimpedanceandthecouplingcapacitanceandiscalculatedwithEquation2.

1fc+

2pRLCC

(2)Forexample,a68-µFcapacitorwithan8-Ωspeakerwouldattenuatelowfrequenciesbelow293Hz.TheBTLconfigurationcancelsthedcoffsets,eliminatingtheneedfortheblockingcapacitors.Low-frequencyperformanceisthenlimitedonlybytheinputnetworkandspeakerresponse.CostandPCBspacearealsominimizedbyeliminatingthebulkycouplingcapacitor.

13

芯天下--http://oneic.com/

TPA321

SLOS312C–JUNE2000–REVISEDJUNE2004

www.ti.com

APPLICATIONINFORMATION(continued)

VDD

-3 dB

VO(PP)CCRLVO(PP)

fc

Figure24.Single-EndedConfigurationandFrequencyResponse

Increasingpowertotheloaddoescarryapenaltyofincreasedinternalpowerdissipation.TheincreaseddissipationisunderstandableconsideringthattheBTLconfigurationproduces4×theoutputpowerofaSEconfiguration.Internaldissipationversusoutputpowerisdiscussedfurtherinthethermalconsiderationssection.

BTLAMPLIFIEREFFICIENCY

Linearamplifiersareinefficient.Theprimarycauseoftheseinefficienciesisvoltagedropacrosstheoutputstagetransistors.Therearetwocomponentsoftheinternalvoltagedrop.Oneistheheadroomordcvoltagedropthatvariesinverselytooutputpower.Thesecondcomponentisduetothesine-wavenatureoftheoutput.ThetotalvoltagedropcanbecalculatedbysubtractingtheRMSvalueoftheoutputvoltagefromVDD.TheinternalvoltagedropmultipliedbytheRMSvalueofthesupplycurrent,IDD(RMS),determinestheinternalpowerdissipationoftheamplifier.

Aneasy-to-useequationtocalculateefficiencystartsoutasbeingequaltotheratioofpowerfromthepowersupplytothepowerdeliveredtotheload.ToaccuratelycalculatetheRMSvaluesofpowerintheloadandintheamplifier,thecurrentandvoltagewaveformshapesmustfirstbeunderstood(seeFigure25).VOIDDVL(RMS)

IDD(RMS)

Figure25.VoltageandCurrentWaveformsforBTLAmplifiers

AlthoughthevoltagesandcurrentsforSEandBTLaresinusoidalintheload,currentsfromthesupplyaredifferentbetweenSEandBTLconfigurations.InanSEapplicationthecurrentwaveformisahalf-waverectifiedshape,whereasinBTLitisafull-waverectifiedwaveform.ThismeansRMSconversionfactorsaredifferent.Keepinmindthatformostofthewaveformboththepushandpulltransistorsarenotonatthesametime,whichsupportsthefactthateachamplifierintheBTLdeviceonlydrawscurrentfromthesupplyforhalfthewaveform.Thefollowingequationsarethebasisforcalculatingamplifierefficiency.

14

芯天下--http://oneic.com/

TPA321

www.ti.com

SLOS312C–JUNE2000–REVISEDJUNE2004

APPLICATIONINFORMATION(continued)

Efficiency+

where

PL+

PPLSUP

Vp2L

LRMSǓRL

2+

2R

VP

Vǒ+LRMSǓǸ2

PSUP+VDDIǒ+

DDRMSǓI

DDǒRMS

VDD2VPpRL

(3)

Ǔ+

2VPpRL

pVP

EfficiencyofaBTLconfiguration++

2VDD

PLRLp

2ǒǓ2VDD

1ń2

(4)

Table1employsEquation4tocalculateefficienciesforthreedifferentoutputpowerlevels.Theefficiencyoftheamplifierisquitelowforlowerpowerlevelsandrisessharplyaspowertotheloadisincreasedresultinginanearlyflatinternalpowerdissipationoverthenormaloperatingrange.Theinternaldissipationatfulloutputpowerislessthaninthehalf-powerrange.Calculatingtheefficiencyforaspecificsystemisthekeytoproperpowersupplydesign.

Table1.EfficiencyvsOutputPowerin3.3-V8-ΩBTLSystems

OUTPUTPOWER(W)0.1250.250.375(1)

EFFICIENCY(%)33.647.658.3PEAK-to-PEAKVOLTAGE(V)1.412.002.45(1)INTERNALDISSIPATION(W)0.260.290.28High-peakvoltagevaluescausetheTHDtoincrease.

Afinalpointtorememberaboutlinearamplifiers(eitherSEorBTL)ishowtomanipulatethetermsintheefficiencyequationtoutmostadvantagewhenpossible.NotethatinEquation4,VDDisinthedenominator.ThisindicatesthatasVDDgoesdown,efficiencygoesup.

15

芯天下--http://oneic.com/

TPA321

SLOS312C–JUNE2000–REVISEDJUNE2004

www.ti.com

APPLICATIONSCHEMATICS

Figure26isaschematicdiagramofatypicalhandheldaudioapplicationcircuit,configuredforagainof–10V/V.

CF5 pFAudio InputRF50 kΩVDD/24IN-IN+VDD6CS1 µFVDD

-+VO+5CIRI0.47 µF10 kΩ32CB2.2 µFBYPASS-+VO-87350 mWGNDFrom System Control1SHUTDOWNBiasControlFigure26.TPA321ApplicationCircuit

Figure27isaschematicdiagramofatypicalhandheldaudioapplicationcircuit,configuredforagainof–10V/Vwithadifferentialinput.

RF50 kΩAudio Input-RI10 kΩCIAudio Input+RI10 kΩVDD6VDD/243IN-IN+VO+5CS1 µFVDD

-+RF50 kΩ2BYPASS-+GND1SHUTDOWNBiasControlVO-87700 mWCICB2.2 µFFrom System ControlFigure27.TPA321ApplicationCircuitWithDifferentialInput

ItisimportanttonotethatusingtheadditionalRFresistorconnectedbetweenIN+andBYPASScausesVDD/2toshiftslightly,whichcouldinfluencetheTHD+Nperformanceoftheamplifier.AlthoughanadditionalexternaloperationalamplifiercouldbeusedtobufferBYPASSfromRF,testsinthelabhaveshownthattheTHD+NperformanceisonlyminimallyaffectedbyoperatinginthefullydifferentialmodeasshowninFigure27.ThefollowingsectionsdiscusstheselectionofthecomponentsusedinFigure26andFigure27.16

芯天下--http://oneic.com/

TPA321

www.ti.com

SLOS312C–JUNE2000–REVISEDJUNE2004

COMPONENTSELECTION

GainSettingResistors,RFandRI

ThegainforeachaudioinputoftheTPA321issetbyresistorsRFandRIaccordingtoEquation5forBTLmode.

FBTLGain+AV+*2RI

ǒǓR

(5)

BTLmodeoperationbringsaboutthefactor2inthegainequationduetotheinvertingamplifiermirroringthevoltageswingacrosstheload.GiventhattheTPA321isaMOSamplifier,theinputimpedanceishigh;consequently,inputleakagecurrentsarenotgenerallyaconcern,althoughnoiseinthecircuitincreasesasthevalueofRFincreases.Inaddition,acertainrangeofRFvaluesisrequiredforproperstart-upoperationoftheamplifier.Takentogether,itisrecommendedthattheeffectiveimpedanceseenbytheinvertingnodeoftheamplifierbesetbetween5kΩand20kΩ.TheeffectiveimpedanceiscalculatedinEquation6.

RRFIEffectiveImpedance+

R)RFI(6)Asanexample,consideraninputresistanceof10kΩandafeedbackresistorof50kΩ.TheBTLgainofthe

amplifierwouldbe–10V/V,andtheeffectiveimpedanceattheinvertingterminalwouldbe8.3kΩ,whichiswellwithintherecommendedrange.

Forhigh-performanceapplicationsmetalfilmresistorsarerecommendedbecausetheytendtohavelowernoiselevelsthancarbonresistors.ForvaluesofRFabove50kΩ,theamplifiertendstobecomeunstableduetoapoleformedfromRFandtheinherentinputcapacitanceoftheMOSinputstructure.Forthisreason,placeasmallcompensationcapacitor(CF)ofapproximately5pFinparallelwithRFwhenRFisgreaterthan50kΩ.Ineffect,thiscreatesalow-passfilternetworkwiththecutofffrequencydefinedinEquation7.

−3 dB

fc+

12pRC

FF

fc

(7)

Forexample,ifRFis100kΩandCFis5pFthenfcis318kHz,whichiswelloutsideofaudiorange.InputCapacitor,CI

Inthetypicalapplication,inputcapacitorCIisrequiredtoallowtheamplifiertobiastheinputsignaltotheproperdclevelforoptimumoperation.Inthiscase,CIandRIformahigh-passfilterwiththecornerfrequencydeterminedinEquation8.

17

芯天下--http://oneic.com/

TPA321

SLOS312C–JUNE2000–REVISEDJUNE2004

www.ti.com

−3 dB

fc+

12pRC

II

fc

(8)

ThevalueofCIisimportanttoconsiderasitdirectlyaffectsthebass(low-frequency)performanceofthecircuit.ConsidertheexamplewhereRIis10kΩandthespecificationcallsforaflatbassresponsedownto40Hz.Equation8isreconfiguredasEquation9.

1C+

I2pRfc

I(9)Inthisexample,CIis0.40µF,soonewouldlikelychooseavalueintherangeof0.47µFto1µF.Afurther

considerationforthiscapacitoristheleakagepathfromtheinputsourcethroughtheinputnetwork(RI,CI)andthefeedbackresistor(RF)totheload.Thisleakagecurrentcreatesadcoffsetvoltageattheinputtotheamplifierthatreducesusefulheadroom,especiallyinhighgainapplications.Forthisreasonalow-leakagetantalumorceramiccapacitoristhebestchoice.Whenpolarizedcapacitorsareused,thepositivesideofthecapacitorshouldfacetheamplifierinputinmostapplications,asthedclevelthereisheldatVDD/2,whichislikelyhigherthanthesourcedclevel.Itisimportanttoconfirmthecapacitorpolarityintheapplication.PowerSupplyDecoupling,CS

TheTPA321isahigh-performanceCMOSaudioamplifierthatrequiresadequatepowersupplydecouplingtoensuretheoutputtotalharmonicdistortion(THD)isaslowaspossible.Powersupplydecouplingalsopreventsoscillationsforlongleadlengthsbetweentheamplifierandthespeaker.Theoptimumdecouplingisachievedbyusingtwocapacitorsofdifferenttypesthattargetdifferenttypesofnoiseonthepowersupplyleads.Forhigherfrequencytransients,spikes,ordigitalhashontheline,agoodlowequivalent-series-resistance(ESR)ceramiccapacitor,typically0.1µF,placedascloseaspossibletothedeviceVDDlead,worksbest.Forfilteringlower-frequencynoisesignals,alargeraluminumelectrolyticcapacitorof10µForgreaterplacedneartheaudiopoweramplifierisrecommended.MidrailBypassCapacitor,CB

Themidrailbypasscapacitor,CB,isthemostcriticalcapacitorandservesseveralimportantfunctions.Duringstart-uporrecoveryfromshutdownmode,CBdeterminestherateatwhichtheamplifierstartsup.Thesecondfunctionistoreducenoiseproducedbythepowersupplycausedbycouplingintotheoutputdrivesignal.Thisnoiseisfromthemidrailgenerationcircuitinternaltotheamplifier,whichappearsasdegradedPSRRandTHD+N.Thecapacitorisfedfroma250-kΩsourceinsidetheamplifier.Tokeepthestart-uppopaslowaspossible,therelationshipshowninEquation10shouldbemaintained,whichinsurestheinputcapacitorisfullychargedbeforethebypasscapacitorisfullychargedandtheamplifierstartsup.

101v

ǒCB 250kΩǓǒRF)RIǓCI

(10)

Asanexample,consideracircuitwhereCBis2.2µF,CIis0.47µF,RFis50kΩ,andRIis10kΩ.Insertingthese

valuesintotheEquation10weget:18.2≤35.5

whichsatisfiestherule.Bypasscapacitor,CB,valuesof2.2-µFto1-µFceramicortantalumlow-ESRcapacitorsarerecommendedforthebestTHDandnoiseperformance.

18

芯天下--http://oneic.com/

TPA321

www.ti.com

SLOS312C–JUNE2000–REVISEDJUNE2004

USINGLOW-ESRCAPACITORS

Low-ESRcapacitorsarerecommendedthroughoutthisapplication.Areal(asopposedtoideal)capacitorcanbemodeledsimplyasaresistorinserieswithanidealcapacitor.Thevoltagedropacrossthisresistorminimizesthebeneficialeffectsofthecapacitorinthecircuit.Thelowertheequivalentvalueofthisresistance,themoretherealcapacitorbehaveslikeanidealcapacitor.

5-VVERSUS3.3-VOPERATION

TheTPA321operatesoverasupplyrangeof2.5Vto5.5V.Thisdatasheetprovidesfullspecificationsfor5-Vand3.3-Voperation,astheseareconsideredtobethetwomostcommonstandardvoltages.Therearenospecialconsiderationsfor3.3-Vversus5-Voperationwithrespecttosupplybypassing,gainsetting,orstability.Themostimportantconsiderationisthatofoutputpower.EachamplifierinTPA321canproduceamaximumvoltageswingofVDD–1V.Thismeans,for3.3-Voperation,clippingstartstooccurwhenVO(PP)=2.3VasopposedtoVO(PP)=4Vat5V.Thereducedvoltageswingsubsequentlyreducesmaximumoutputpowerintoan8-Ωloadbeforedistortionbecomessignificant.

Operationfrom3.3-Vsupplies,ascanbeshownfromtheefficiencyformulainEquation4,consumesapproximatelytwo-thirdsthesupplypowerforagivenoutput-powerlevelthanoperationfrom5-Vsupplies.

HEADROOMANDTHERMALCONSIDERATIONS

Linearpoweramplifiersdissipateasignificantamountofheatinthepackageundernormaloperatingconditions.AtypicalmusicCDrequires12dBto15dBofdynamicheadroomtopasstheloudestportionswithoutdistortionascomparedwiththeaveragepoweroutput.TheTPA321datasheetshowsthatwhentheTPA321isoperatingfroma5-Vsupplyintoa8-Ωspeaker,350mWpeaksareavailable.ConvertingwattstodB:

P

P+10LogW+10Log350mW+–4.6dBdBP1W

refSubtractingtheheadroomrestrictiontoobtaintheaveragelisteninglevelwithoutdistortionyields:

4.6dB–15dB=–19.6dB(15-dBheadroom)4.6dB–12dB=–16.6dB(12-dBheadroom)4.6dB–9dB=–13.6dB(9-dBheadroom)4.6dB–6dB=–10.6dB(6-dBheadroom)4.6dB–3dB=–7.6dB(3-dBheadroom)

ConvertingdBbackintowatts:

PW=10PdB/10×Pref

=11mW(15dBheadroom)=22mW(12-dBheadroom)=44mW(9-dBheadroom)=88mW(6-dBheadroom)=175mW(3-dBheadroom)

Thisisvaluableinformationtoconsiderwhenattemptingtoestimatetheheatdissipationrequirementsfortheamplifiersystem.Comparingtheabsoluteworstcase,whichis350mWofcontinuouspoweroutputwith0dBofheadroom,against12-dBand15-dBapplicationsdrasticallyaffectsmaximumambienttemperatureratingsforthesystem.Usingthepowerdissipationcurvesfora5-V,8-Ωsystem,theinternaldissipationintheTPA321andmaximumambienttemperaturesisshowninTable2.

19

芯天下--http://oneic.com/

TPA321

SLOS312C–JUNE2000–REVISEDJUNE2004

www.ti.com

Table2.TPA321PowerRating,5-V,8-ΩBTL

PEAKOUTPUTPOWER(mW)350350350350350350AVERAGEOUTPUTPOWER350mW175mW(3dB)88mW(6dB)44mW(9dB)22mW(12dB)11mW(15dB)POWERDISSIPATION(mW)600500380300200180MAXIMUMAMBIENTTEMPERATURE0CFM46°C64°C85°C98°C115°C119°CTable2showsthattheTPA321canbeusedtoitsfull350-mWratingwithoutanyheatsinkinginstillairupto46°C.

20

芯天下--http://oneic.com/

PACKAGEOPTIONADDENDUM

www.ti.com

18-Jul-2006

PACKAGINGINFORMATION

OrderableDevice

TPA321DTPA321DG4TPA321DGN

Status(1)ACTIVEACTIVEACTIVE

PackageTypeSOICSOICMSOP-Power PADMSOP-Power PADMSOP-Power PADMSOP-Power PADSOICSOIC

PackageDrawing

DDDGN

PinsPackageEcoPlan(2)

Qty888

757580

Green(RoHS&noSb/Br)Green(RoHS&noSb/Br)Green(RoHS&noSb/Br)Green(RoHS&noSb/Br)

Lead/BallFinishCUNIPDAUCUNIPDAUCUNIPDAU

MSLPeakTemp(3)Level-1-260C-UNLIMLevel-1-260C-UNLIMLevel-1-260C-UNLIM

TPA321DGNG4ACTIVEDGN880CUNIPDAULevel-1-260C-UNLIM

TPA321DGNRACTIVEDGN8

2500Green(RoHS&

noSb/Br)2500Green(RoHS&

noSb/Br)2500Green(RoHS&

noSb/Br)2500Green(RoHS&

noSb/Br)

CUNIPDAULevel-1-260C-UNLIM

TPA321DGNRG4ACTIVEDGN8CUNIPDAULevel-1-260C-UNLIM

TPA321DRTPA321DRG4

(1)

ACTIVEACTIVE

DD

88

CUNIPDAUCUNIPDAU

Level-1-260C-UNLIMLevel-1-260C-UNLIM

Themarketingstatusvaluesaredefinedasfollows:ACTIVE:Productdevicerecommendedfornewdesigns.

LIFEBUY:TIhasannouncedthatthedevicewillbediscontinued,andalifetime-buyperiodisineffect.

NRND:Notrecommendedfornewdesigns.Deviceisinproductiontosupportexistingcustomers,butTIdoesnotrecommendusingthispartinanewdesign.

PREVIEW:Devicehasbeenannouncedbutisnotinproduction.Samplesmayormaynotbeavailable.OBSOLETE:TIhasdiscontinuedtheproductionofthedevice.

(2)

EcoPlan-Theplannedeco-friendlyclassification:Pb-Free(RoHS),Pb-Free(RoHSExempt),orGreen(RoHS&noSb/Br)-pleasecheckhttp://www.ti.com/productcontentforthelatestavailabilityinformationandadditionalproductcontentdetails.TBD:ThePb-Free/Greenconversionplanhasnotbeendefined.

Pb-Free(RoHS):TI'sterms\"Lead-Free\"or\"Pb-Free\"meansemiconductorproductsthatarecompatiblewiththecurrentRoHSrequirementsforall6substances,includingtherequirementthatleadnotexceed0.1%byweightinhomogeneousmaterials.Wheredesignedtobesolderedathightemperatures,TIPb-Freeproductsaresuitableforuseinspecifiedlead-freeprocesses.

Pb-Free(RoHSExempt):ThiscomponenthasaRoHSexemptionforeither1)lead-basedflip-chipsolderbumpsusedbetweenthedieandpackage,or2)lead-baseddieadhesiveusedbetweenthedieandleadframe.ThecomponentisotherwiseconsideredPb-Free(RoHScompatible)asdefinedabove.

Green(RoHS&noSb/Br):TIdefines\"Green\"tomeanPb-Free(RoHScompatible),andfreeofBromine(Br)andAntimony(Sb)basedflameretardants(BrorSbdonotexceed0.1%byweightinhomogeneousmaterial)

(3)

MSL,PeakTemp.--TheMoistureSensitivityLevelratingaccordingtotheJEDECindustrystandardclassifications,andpeaksoldertemperature.

ImportantInformationandDisclaimer:TheinformationprovidedonthispagerepresentsTI'sknowledgeandbeliefasofthedatethatitisprovided.TIbasesitsknowledgeandbeliefoninformationprovidedbythirdparties,andmakesnorepresentationorwarrantyastotheaccuracyofsuchinformation.Effortsareunderwaytobetterintegrateinformationfromthirdparties.TIhastakenandcontinuestotakereasonablestepstoproviderepresentativeandaccurateinformationbutmaynothaveconducteddestructivetestingorchemicalanalysisonincomingmaterialsandchemicals.TIandTIsuppliersconsidercertaininformationtobeproprietary,andthusCASnumbersandotherlimitedinformationmaynotbeavailableforrelease.

InnoeventshallTI'sliabilityarisingoutofsuchinformationexceedthetotalpurchasepriceoftheTIpart(s)atissueinthisdocumentsoldbyTItoCustomeronanannualbasis.

Addendum-Page1

芯天下--http://oneic.com/

PACKAGEMATERIALSINFORMATION

www.ti.com

14-Jul-2012

TAPEANDREELINFORMATION

*Alldimensionsarenominal

Device

PackagePackagePinsTypeDrawingMSOP-Power PADSOIC

DGN

8

SPQ

ReelReelA0DiameterWidth(mm)(mm)W1(mm)330.0

12.4

5.3

B0(mm)3.4

K0(mm)1.4

P1(mm)8.0

WPin1(mm)Quadrant12.0

Q1

TPA321DGNR2500

TPA321DRD82500330.012.46.45.22.18.012.0Q1

PackMaterials-Page1

芯天下--http://oneic.com/

PACKAGEMATERIALSINFORMATION

www.ti.com

14-Jul-2012

*Alldimensionsarenominal

DeviceTPA321DGNRTPA321DR

PackageTypeMSOP-PowerPAD

SOIC

PackageDrawing

DGND

Pins88

SPQ25002500

Length(mm)

358.0367.0

Width(mm)335.0367.0

Height(mm)

35.035.0

PackMaterials-Page2

芯天下--http://oneic.com/

芯天下--http://oneic.com/

芯天下--http://oneic.com/

芯天下--http://oneic.com/

IMPORTANTNOTICE

TexasInstrumentsIncorporatedanditssubsidiaries(TI)reservetherighttomakecorrections,enhancements,improvementsandotherchangestoitssemiconductorproductsandservicesperJESD46CandtodiscontinueanyproductorserviceperJESD48B.Buyersshouldobtainthelatestrelevantinformationbeforeplacingordersandshouldverifythatsuchinformationiscurrentandcomplete.All

semiconductorproducts(alsoreferredtohereinas“components”)aresoldsubjecttoTI’stermsandconditionsofsalesuppliedatthetimeoforderacknowledgment.

TIwarrantsperformanceofitscomponentstothespecificationsapplicableatthetimeofsale,inaccordancewiththewarrantyinTI’stermsandconditionsofsaleofsemiconductorproducts.TestingandotherqualitycontroltechniquesareusedtotheextentTIdeemsnecessarytosupportthiswarranty.Exceptwheremandatedbyapplicablelaw,testingofallparametersofeachcomponentisnotnecessarilyperformed.

TIassumesnoliabilityforapplicationsassistanceorthedesignofBuyers’products.BuyersareresponsiblefortheirproductsandapplicationsusingTIcomponents.TominimizetherisksassociatedwithBuyers’productsandapplications,Buyersshouldprovideadequatedesignandoperatingsafeguards.

TIdoesnotwarrantorrepresentthatanylicense,eitherexpressorimplied,isgrantedunderanypatentright,copyright,maskworkright,orotherintellectualpropertyrightrelatingtoanycombination,machine,orprocessinwhichTIcomponentsorservicesareused.InformationpublishedbyTIregardingthird-partyproductsorservicesdoesnotconstitutealicensetousesuchproductsorservicesorawarrantyorendorsementthereof.Useofsuchinformationmayrequirealicensefromathirdpartyunderthepatentsorotherintellectualpropertyofthethirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI.

ReproductionofsignificantportionsofTIinformationinTIdatabooksordatasheetsispermissibleonlyifreproductioniswithoutalterationandisaccompaniedbyallassociatedwarranties,conditions,limitations,andnotices.TIisnotresponsibleorliableforsuchaltereddocumentation.Informationofthirdpartiesmaybesubjecttoadditionalrestrictions.

ResaleofTIcomponentsorserviceswithstatementsdifferentfromorbeyondtheparametersstatedbyTIforthatcomponentorservicevoidsallexpressandanyimpliedwarrantiesfortheassociatedTIcomponentorserviceandisanunfairanddeceptivebusinesspractice.TIisnotresponsibleorliableforanysuchstatements.

Buyeracknowledgesandagreesthatitissolelyresponsibleforcompliancewithalllegal,regulatoryandsafety-relatedrequirements

concerningitsproducts,andanyuseofTIcomponentsinitsapplications,notwithstandinganyapplications-relatedinformationorsupportthatmaybeprovidedbyTI.Buyerrepresentsandagreesthatithasallthenecessaryexpertisetocreateandimplementsafeguardswhichanticipatedangerousconsequencesoffailures,monitorfailuresandtheirconsequences,lessenthelikelihoodoffailuresthatmightcauseharmandtakeappropriateremedialactions.BuyerwillfullyindemnifyTIanditsrepresentativesagainstanydamagesarisingoutoftheuseofanyTIcomponentsinsafety-criticalapplications.

Insomecases,TIcomponentsmaybepromotedspecificallytofacilitatesafety-relatedapplications.Withsuchcomponents,TI’sgoalistohelpenablecustomerstodesignandcreatetheirownend-productsolutionsthatmeetapplicablefunctionalsafetystandardsandrequirements.Nonetheless,suchcomponentsaresubjecttotheseterms.

NoTIcomponentsareauthorizedforuseinFDAClassIII(orsimilarlife-criticalmedicalequipment)unlessauthorizedofficersofthepartieshaveexecutedaspecialagreementspecificallygoverningsuchuse.

OnlythoseTIcomponentswhichTIhasspecificallydesignatedasmilitarygradeor“enhancedplastic”aredesignedandintendedforuseinmilitary/aerospaceapplicationsorenvironments.BuyeracknowledgesandagreesthatanymilitaryoraerospaceuseofTIcomponentswhichhavenotbeensodesignatedissolelyattheBuyer'srisk,andthatBuyerissolelyresponsibleforcompliancewithalllegalandregulatoryrequirementsinconnectionwithsuchuse.

TIhasspecificallydesignatedcertaincomponentswhichmeetISO/TS16949requirements,mainlyforautomotiveuse.Componentswhichhavenotbeensodesignatedareneitherdesignednorintendedforautomotiveuse;andTIwillnotberesponsibleforanyfailureofsuchcomponentstomeetsuchrequirements.ProductsAudioAmplifiersDataConvertersDLP®ProductsDSP

ClocksandTimersInterfaceLogicPowerMgmtMicrocontrollersRFID

OMAPMobileProcessorsWirelessConnectivity

www.ti.com/audioamplifier.ti.comdataconverter.ti.comwww.dlp.comdsp.ti.comwww.ti.com/clocksinterface.ti.comlogic.ti.compower.ti.commicrocontroller.ti.comwww.ti-rfid.comwww.ti.com/omap

www.ti.com/wirelessconnectivity

MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265

Copyright©2012,TexasInstrumentsIncorporated

TIE2ECommunity

e2e.ti.com

Applications

AutomotiveandTransportationwww.ti.com/automotiveCommunicationsandTelecomwww.ti.com/communicationsComputersandPeripheralsConsumerElectronicsEnergyandLightingIndustrialMedicalSecurity

Space,AvionicsandDefenseVideoandImaging

www.ti.com/computerswww.ti.com/consumer-appswww.ti.com/energywww.ti.com/industrialwww.ti.com/medicalwww.ti.com/security

www.ti.com/space-avionics-defensewww.ti.com/video

芯天下--http://oneic.com/

因篇幅问题不能全部显示,请点此查看更多更全内容