逆矩阵的性质

发布网友 发布时间:2022-04-24 13:18

我来回答

4个回答

热心网友 时间:2023-10-14 04:11

性质:

1,可逆矩阵一定是方阵。

2,如果矩阵A是可逆的,其逆矩阵是唯一的。

3,A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4,可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)

5,若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6,两个可逆矩阵的乘积依然可逆。

7,矩阵可逆当且仅当它是满秩矩阵。

扩展资料:

设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。

(1)验证两个矩阵互为逆矩阵

按照矩阵的乘法满足:  故A,B互为逆矩阵。

(2)逆矩阵的唯一性

若矩阵A是可逆的,则A的逆矩阵是唯一的。

证明:若B,C都是A的逆矩阵,则有所以B=C,即A的逆矩阵是唯一的。

(3)判定简单的矩阵不可逆

如  。假设有  是A的逆矩阵,

则有

比较其右下方一项:0≠1。 若矩阵A可逆,则 |A|≠0

若A可逆,即有A-1,使得AA-1=E,故|A|·|A-1|=|E|=1则|A|≠0

参考资料:百度百科----逆矩阵

热心网友 时间:2023-10-14 04:11

逆矩阵的性质:

性质1:如果A、B是两个同阶可逆矩阵,则AB也可逆,且(AB)–1=B–1A–1。

性质2:如果矩阵A可逆,则A的逆矩阵A–1也可逆,且(A–1)–1=A。

性质3:如果A可逆,数k≠0,则kA也可逆,且(kA)–1=A–1。

性质4:如果矩阵A可逆,则A的转置矩阵AT也可逆,且(AT)–1=(A–1)T。

性质5::矩阵可逆当且仅当它是满秩矩阵。

扩展资料

定理: n阶矩阵A可逆的充分必要条件是|A|≠0,且当A可逆时, A–1= A* /|A|  ( A*为A伴随矩阵)      

推论1:若A、B为同阶方阵,且AB=E,则A、B都可逆,且A–1=B,B–1=A。

推论2:n阶矩阵A可逆的充分必要条件是r(A)=n。

推论3:n阶矩阵A可逆的充分必要条件是A的行(列)向量组线性无关。

推论4:n阶矩阵A可逆的充分必要条件是A的n个特征值都不为0.

参考资料来源:百度百科-逆矩阵

热心网友 时间:2023-10-14 04:12

性质1:A的逆矩阵的逆等于A;
2:λA的逆=(1/λ)*A的逆;
3:(AB)的逆=B的逆*A的逆;
4:A的转置的逆=A的逆的转置
5:若A可逆,det(A的逆)=(detA)的逆
没你说的(A的你+B的逆+C的逆)=(A+B+C)的逆
这个是不对的 !

热心网友 时间:2023-10-14 04:12

性质:1,可逆矩阵一定是方阵。2,如果矩阵a是可逆的,其逆矩阵是唯一的。3,a的逆矩阵的逆矩阵还是a。记作(a-1)-1=a。4,可逆矩阵a的转置矩阵at也可逆,并且(at)-1=(a-1)t (转置的逆等于逆的转置)。5,若矩阵a可逆,则矩阵a满足消去律。即ab=o(或ba=o),则b=o,ab=ac(或ba=ca),则b=c。6,两个可逆矩阵的乘积依然可逆。7,矩阵可逆当且仅当它是满秩矩阵。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com