求高一 对数 及 y=logax 函数的所有公式

发布网友 发布时间:2022-04-22 00:37

我来回答

3个回答

热心网友 时间:2023-10-02 15:46

定义:  若a^n=b(a>0且a≠1)   则n=log(a)(b) 基本性质:  1、a^log(a)(b)=b   2、log(a)(a)=1   3、log(a)(MN)=log(a)(M)+log(a)(N);   4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M)   6、log(a)[M^(1/n)]=log(a)(M)/n   (注:下文^均为上标符号,例:a^1即为a) 推导  1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。   2、因为a^b=a^b   令t=a^b   所以a^b=t,b=log(a)(t)=log(a)(a^b)   3、MN=M×N   由基本性质1(换掉M和N)   a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N)   由指数的性质   a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}   两种方法只是性质不同,采用方法依实际情况而定   又因为指数函数是单调函数,所以   log(a)(MN) = log(a)(M) + log(a)(N)   4、与(3)类似处理   MN=M÷N   由基本性质1(换掉M和N)   a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]   由指数的性质   a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}   又因为指数函数是单调函数,所以   log(a)(M÷N) = log(a)(M) - log(a)(N)   5、与(3)类似处理   M^n=M^n   由基本性质1(换掉M)   a^[log(a)(M^n)] = {a^[log(a)(M)]}^n   由指数的性质   a^[log(a)(M^n)] = a^{[log(a)(M)]*n}   又因为指数函数是单调函数,所以   log(a)(M^n)=nlog(a)(M)   基本性质4推广   log(a^n)(b^m)=m/n*[log(a)(b)]   推导如下:   由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]   log(a^n)(b^m)=ln(b^m)÷ln(a^n)   换底公式的推导:   设e^x=b^m,e^y=a^n   则log(a^n)(b^m)=log(e^y)(e^x)=x/y   x=ln(b^m),y=ln(a^n)   得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)   由基本性质4可得   log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}   再由换底公式   log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完) 编辑本段函数图象  1.对数函数的图象都过(1,0)点.   2.对于y=log(a)(n)函数,   ①,当0<a<1时,图象上函数显示为(0,+∞)单减.随着a 的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1.   ②当a>1时,图象上显示函数为(0,+∞)单增,随着a的减小,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.   3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称

热心网友 时间:2023-10-02 15:46

a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N)   由指数的性质   a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}  又因为指数函数是单调函数,所以  log(a)(MN) = log(a)(M) + log(a)(N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 检举 团队的补充 2010-08-18 10:05 a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N)   由指数的性质   a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}  又因为指数函数是单调函数,所以  log(a)(MN) = log(a)(M) + log(a)(N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]×n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M)

热心网友 时间:2023-10-02 15:47

对数性质 ①loga(1)=0; ②loga(a)=1; ③负数与零无对数。运算法则 ①loga(MN)=logaM+logaN; ②loga(M/N)=logaM-logaN; ③对logaM中M的n次方有=nlogaM;基本性质:   1、a^(log(a)(b))=b   2、log(a)(MN)=log(a)(M)+log(a)(N);   3、log(a)(M÷N)=log(a)(M)-log(a)(N);   4、log(a)(M^n)=nlog(a)(M)   5、log(a^n)M=1/nlog(a)(M)换底公式 log(a)(B)=log(c)B/log(c)(a) log(1/a)(1/b)=loga(b) loga(b)*logb(a)=1

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com